SINAMICS G120
 Control Units CU240B-2
 Control Units CU240E-2

Parameter Manual • 01/2011

SINAMICS

SIEMENS

SIEMENS

ParametersSINAMICS Function diagrams 2
SINAMICS G120Control Units CU240B/E-23
Faults and Alarms
List of Abbreviations
Parameter Manual
C
Index

Valid for	Firmware version
Control Units	
CU240B-2	4.4
CU240B-2 DP	4.4
CU240E-2	4.4
CU240E-2 DP	4.4
CU240E-2 F	4.4
CU240E-2 DP F	4.4

Safety Guidelines

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

Danger

indicates that death or severe personal injury will result if proper precautions are not taken.

Warning

indicates that death or severe personal injury may result if proper precautions are not taken.

Caution

with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

Caution

without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

Notice

indicates that an unintended result or situation can occur if the corresponding information is not taken into account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The device/system may only be set up and used in conjunction with this documentation. Commissioning and operation of a device/system may only be performed by qualified personnel. Within the context of the safety notes in this documentation qualified persons are defined as persons who are authorized to commission, ground and label devices, systems and circuits in accordance with established safety practices and standards.

Prescribed Usage of Siemens Products

Note the following:

Warning

This device may only be used for the applications described in the catalog or the technical description and only in connection with devices or components from other manufacturers which have been approved or recommended by Siemens.

Correct, reliable operation of the product requires proper transport, storage, positioning and assembly as well as careful operation and maintenance.

Trademarks

All names identified by ${ }^{\circledR}$ are registered trademarks of the Siemens $A G$. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Copyright Siemens AG 2011 All Rights Reserved

The distribution and duplication of this document or the utilization and transmission of its contents are not permitted without express written permission. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

Siemens AG

Industry Sector
Postfach 4848
90327 NUREMBERG
GERMANY

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Contents

1 Parameters 1-7
1.1 Introduction to Parameters 1-8
1.1.1 Explanation of list of parameters 1-8
1.1.2 Numerical ranges of parameters 1-15
1.2 List of Parameters 1-16
1.3 Command and Drive Data Sets - Overview 1-464
1.3.1 Command Data Sets (CDS) 1-464
1.3.2 Drive Data Sets (DDS) 1-466
1.3.3 Motor Data Sets (MDS) 1-471
1.3.4 Power unit Data Set (PDS) 1-473
1.4 Connector/Binector (BICO)-Parameters 1-474
1.4.1 Binector Input Parameters. 1-474
1.4.2 Connector Input Parameters 1-476
1.4.3 Binector Output Parameters 1-478
1.4.4 Connector Output Parameters 1-479
1.4.5 Connector/Binector Output Parameters 1-483
1.5 Quick commissioning (p0010 = 1) 1-485
2 Function diagrams 2-487
2.1 Contents: function diagrams 2-488
2.2 Explanations for the function diagrams 2-493
2.3 Overview 2-498
2.4 Input/Output Terminals 2-506
2.5 Communication 2-517
2.5.1 Fieldbus Interface (USS, Modbus) (CU240B/E-2) 2-518
2.5.2 PROFIdrive / PROFIBUS (CU240B/E-2 DP) 2-525
2.6 Internal control/status words 2-539
2.7 Braking Control 2-557
2.8 Safety Integrated 2-559
2.9 Setpoint channel 2-572
$2.10 \mathrm{~V} / \mathrm{f}$ control 2-582
2.11 Vector control 2-586
2.12 Free Function Blocks 2-606
2.13 Technology functions 2-627
2.14 Technology controller 2-629
2.15 Signals and monitoring functions 2-634
2.16 Faults and warnings 2-644
2.17 Data sets 2-649
3 Faults and Alarms. 3-653
3.1 Faults and Alarms - Overview 3-654
3.1.1 General information. 3-654
3.1.2 Fault reactions 3-656
3.1.3 Acknowledgement of faults 3-657
3.2 List of Faults and Alarms. 3-658
A Appendix A-733
A. 1 ASCII Table (excerpt) A-734
A. 2 List for motor code A-734
B List of Abbreviations B-735
C Index C-741

Parameters

Contents

1.1 Introduction to Parameters 1-8
1.2 List of Parameters 1-16
1.3 Command and Drive Data Sets - Overview 1-464
1.4 Connector/Binector (BICO)-Parameters 1-474
1.5 Quick commissioning (p0010 = 1) 1-485

1.1 Introduction to Parameters

1.1.1 Explanation of list of parameters

The layout of the parameter description is as follows (example only).

r0068[0...1]	CO: Absolute current actual value / I_act abs val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Data set: -
	Unit group: 6_2	Unit selection: p0505	
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]

Fig. 1-1 Read-only parameter

p0700[0...n]	Command source selection / Cmd src sel		
CU240E-2	Access level: 1	Calculated: -	Data type: Integer16
CU240E-2 F	Can be changed: T	Scaling: -	Data set: CDS, p0170
-	Unit group:-	Unit selection: -	
	Min	Max	Factory setting
	0	184	0

Fig. 1-2 Write parameter

Parameter number

Indicates the relevant parameter number. The numbers used are 4 to 5-digit numbers. Numbers prefixed with an " r " indicate that the parameter is a "read-only" parameter, which displays a particular value but cannot be changed directly by specifying a different value via this parameter number.

All other parameters are prefixed with a " p ". The values of these parameters can be changed directly in the range indicated by the "Min" and "Max" settings in the header. If these values have a physical unit, it is shown in brackets.
[index] indicates that the parameter is an indexed parameter and specifies the range of indices available.
. $0 . . .15$ indicates that the parameter has several bits, which can be evaluated or connected individually.

CUIPM variants

Indicates for which Control Units and/or Power Modules the parameter is valid. If no CUs or PMs are listed the parameter is valid for all variants.

Parameter text (Long name/Short name)

Indicates the name of the relevant parameter.
Certain parameter names include the following abbreviated prefixes: $\mathrm{BI}, \mathrm{BO}, \mathrm{Cl}$, CO and CO/BO followed by a colon.
These abbreviations have the following meanings:

Binector Input, i.e. parameter selects the source of a binary signal
Binector Output, i.e. parameter connects as a binary signal

Connector Input, i.e. parameter selects the source of an analog signal

Connector Output, i.e. parameter connects as an analog signal
Connector/Binector Output, i.e. parameter connects as an analog signal and/or as a binary signal
CoBo.pdf
To make use of BICO you will need access to the full parameter list. At this level many new parameter settings are possible, including BICO functionality. BICO functionality is a different, more flexible way of setting and combining input and output functions.

The BICO system allows complex functions to be programmed. Boolean and mathematical relationships can be set up between inputs (digital, analog, serial etc.) and outputs (inverter current, frequency, analog output, relays, etc.).

At Bl and Cl parameters the parameter number is specified under Factory setting with which this parameter is connected. In this case the Min and Max values have dashes.

Access level

Indicates the level of user access. For the parameters of all variants of Control Units CU240B-2 and CU240E-2 there is only one freely accessible access level effective. The parameters with the declaration "Access level 1" to "Access level 3" belong to them. Parameters with "Access level 4" are service parameters and password protected.

Data type

The data types available are shown in the table below.
Table 1-1 Available data types

Notation	Meaning
Unsigned8 (U8)	8-bit unsigned
Unsigned16 (U16)	16-bit unsigned
Unsigned32 (U32)	32-bit unsigned
Integer16 (116)	16-bit integer
Integer32 (I32)	32-bit integer
FloatingPoint32 (Float)	32-bit floating point number

The information of the data types for binector and connector inputs can be composed of two specifications (discreated by a slash):

- First specification: data type of the parameter
- Second specification: data type of the signal source preferably to be connected (binector or connector output)

Depending on the data type of the BICO input parameter (signal sink) and BICO output parameter (signal source) the following combinations are possible when creating BICO interconnections:

Table 1-2 Possible combinations of BICO interconnections

	BICO input parameter			
	CI parameter			
BICO output parameter	Unsigned32 I Integer16	Unsigned32 I Integer32	Unsigned32 I FloatingPoint32	Unsigned32 I Binary
CO: Unsigned8	x	x	-	-
CO: Unsigned16	x	x	-	-
CO: Unsigned32	x	x	-	-
CO: Integer16	x	x	r 2050	-
CO: Integer32	x	x	-	-
CO: FloatingPoint32	x	x	x	-
BO: Unsigned8	-	-	-	x
BO: Unsigned16	-	-	-	x
BO: Unsigned32	-	-	-	x
BO: Integer16	-	-	-	x
BO: Integer32	-	-	-	-
BO: FloatingPoint32	-	-	-	x
Legend:	$\mathrm{x}:$ BICO interconnection permitted		-	

Scaling

Specification of the reference value with which a signal value is automatically converted for a BICO interconnection.

Reference quantities, corresponding to 100%, are required for the statement of physical units as percentages. These reference quantities are entered in parameters p2000 ... p2007.

In addition to p2000 ... p2007 the following scalings are used:

- PERCENT $1.0=100 \%$
- 4000 H 4000 hex $=100 \%$

Calculated

Specifies whether the parameter is influenced by automatic calculations.
p0340 defines the following calculations:

- p0340 $=1$ contains the calculations of p0340 $=2,3,4,5$.
- p0340 = 2 calculates the motor parameters (p0350 ... p0360, p0625).
- p0340 $=3$ contains the calculations of p0340 $=4,5$.
- p0340 $=4$ only calculates the controller parameters.
- p0340 $=5$ only calculates the controller limits.

Note:

For p3900 > 0, also p0340 $=1$ is automatically called.
After p1900 $=1,2, \mathrm{p} 0340=3$ is automatically called.

Parameters referring to p0340 in the specification "Calculated" are dependent on the applied Power Module and motor. In this case, the values of "Factory setting" do not correspond to the actual values because these values are calculated during the commissioning. This also applies to the motor parameters.

Can be changed

Inverter state in which the parameter is changeable. Three states are possible:

- Commissioning

$$
C(x)
$$

- Run

U

- Ready to run

T

In these states the parameter can be changed. One, two or all three states may be specified. If all three states are specified, it is possible to change the parameter setting in all three inverter states. (x) shows, that the parameter is only changeable when p0010 $=x$.

Data Set

Parameters which are dependent on a data set are identified as follows:

- CDS (Command Data Set)

They are always indexed with $[0 \ldots n]$ (with $n=0 \ldots 3$ depending on setting in p0170).
[0] = Command Data Set 0
[1] = Command Data Set 1
etc.

- DDS (Drive Data Set)

They are always indexed with $[0 \ldots \mathrm{n}]$ (with $\mathrm{n}=0 \ldots 3$ depending on setting in p0180).
[0] = Drive Data Set 0
[1] = Drive Data Set 1
etc.

- MDS (Motor Data Set) and PDS (Power unit Data Set)

They are always indexed with $[0 \ldots n]$ (with $n=0 \ldots 3$ depending on setting in p0180). The Motor Data Sets and Power unit Data Sets are allocated to the Drive Data Sets, i.e. they are automatically addressed with the selection of a Drive Data Set (e.g. Drive Data Set 1 includes Motor Data Set 1 and Power unit Data Set 1).

Data sets can only be applied and cleared when p0010 = 15 is set.

"Unit group" and "Unit selection"

For parameters where the unit can be switched, the specifications for "Unit group" and "Unit selection" determine the group to which this parameter belongs and with which parameter the unit can be switched over.
The standard unit of a parameter is specified in square parentheses after the values for "Min", "Max", and "Factory setting".

Min
Indicates the minimum value to which the parameter can be set.

Max

Indicates the maximum value to which the parameter can be set.

Factory setting

Indicates the default value, i.e. the value which applies if the user does not specify a particular value for the parameter (see also "Calculated").

Example:

Unit group: 7_1, unit selection: p0505
The parameter belongs to unit group 7_1 and the unit can be switched over using p0505.
All the potential unit groups and possible unit selections are listed below.
Table 1-3 Unit group (p0100)

Unit group	Unit selection for p0100 =			Reference value at \% \%
	$\mathbf{0}$		$\mathbf{1}$	$\mathbf{2}$

Table 1-4 Unit group (p0505)

Unit group	Unit selection for p0505 =				Reference value at \%	
	1	$\mathbf{2}$		$\mathbf{3}$	$\mathbf{4}$	
2_1	Hz	$\%$	Hz	$\%$	p 2000	
3_1	rpm	$\%$	rpm	$\%$	p2000	
5_1	Vrms	$\%$	Vrms	$\%$	p2001	
5_2	V	$\%$	V	$\%$	p2001	
5_3	V	$\%$	V	$\%$	p2001	
6_2	Arms	$\%$	Arms	$\%$	p2002	
6_5	A	$\%$	A	$\%$	p2002	

Table 1-4 Unit group (p0505), continued

Unit group	Unit selection for p0505 =				Reference value at \%	
	$\mathbf{1}$		$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	

Table 1-5 Unit group (p0595)

Unit group	Unit selection for p0595 = Value	
$9 _1$	Unit	Reference value at \% values that can be set and the technological units are shown in p0595 (see Chapter 1.2).

Description

Explanation of the parameter function.

Values

List of possible parameter values.

Recommendation

Information about recommended settings.

Index

The name and meaning of each individual index is specified for indexed parameters, except indexed parameters which belong to a data set (see "Data Set").

Bit array

For parameters with bit arrays, for each bit the following information is provided:

- Bit number and signal name
- Meaning at signal states 0 and 1
- Function diagram (FP) (optional). The signal is shown on this function diagram.

Dependency

Conditions which need to be fulfilled with regard to this parameter. Also includes special effects which can occur between this parameter and others.

1.1.2 Numerical ranges of parameters

Note:

The following numerical ranges of the parameters describe a general overview of SINAMICS parameters. The specific parameters are listed in Chapter 1.2.

Table 1-6 Numerical ranges of parameters

Range		
from	to	
0000	0099	Operation and visualization
0100	0199	Commissioning
0200	0299	Power Module
0300	0399	Motor
0500	0599	Technology and units
0600	0699	Thermal motor protection and motor model, maximum current
0700	0799	Command sources and terminals on Control Unit
0800	0839	CDS, DDS data sets (e.g. switch over, copy)
0840	0879	Sequence control (e.g. source for ON/OFF1)
0880	0899	Control and status words
0900	0999	PROFIBUS/PROFIdrive
1000	1199	Setpoint channel
1200	1299	Functions (e.g. motor holding brake)
1300	1399	V/f control
1400	1799	Closed-loop control
1800	1899	Gating unit
1900	1999	Power Module and motor identification
2000	2099	Communication (PROFIBUS)
2100	2199	Faults and alarms, monitoring functions
2200	2399	Technology controller
3100	3299	Messages
3800	3860	Compound braking
3900	3999	Management parameters
7800	7899	EEPROM read/write parameters
8500	8599	Data and macro management
8800	8899	PROFIdrive
8900	8999	PROFINET, USB
9300	9399	Safety Integrated
9400	9499	Parameter consistency and storage
9500	9899	Safety Integrated
9900	9949	Topology
9950	9999	Diagnostics (internal)
10000	10199	Safety Integrated
20000	20399	Free Function Blocks (FFB)

1.2 List of Parameters

Product: SINAMICS G120 CU240, Version: 4402100, Language: eng
Objects: CU240B-2, CU240B-2 DP, CU240E-2, CU240E-2 DP, CU240E-2 DP F, CU240E-2 F

p0003	Access level / Acc_level		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: C, U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	4	Factory setting
3		3	

Description: Sets the access level to read and write parameters.
Value:
3: Expert
4: Service
Note: Access level 3 (experts):
Expert know-how is required for these parameters (e.g. BICO parameterization).
Access level 4 (service):
For these parameters, it is necessary that authorized service personnel enter the appropriate password (p3950).

p0014	Buffer memory mode / Buf mem mode
	Access level: 3 Calculated: - Data type: Integer16
	Can be changed: U, T Scaling: - Data set: -
	Units group: - Unit selection: -
	Min Max Factory setting 0 2 0
Description:	Sets the mode for the buffer memory.
Value:	$\begin{array}{ll} \text { 0: } & \text { Save in a non-volatile fashion (RAM) } \\ \text { 1: } & \text { Buffer memory active (non-volatile) } \\ \text { 2: } & \text { Clear buffer memory } \end{array}$
Dependency:	If p0014 = 1, changes in the same parameter, as well as in following parameters will not be copied to the buffer memory: Refer to: p0040, p0340, p0650, p0802, p0803, p0804, p0952, p0969, p0970, p0971, p0972, p1900, p1910, p1960, p2111, p3900, p3981 Refer to: A01066, A01067
Caution: Notice:	For p0014 $=2$, entries in the buffer memory are lost and cannot be retrieved. After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.
Note:	The parameter is not influenced by setting the factory setting. Re p0014 = 0: Parameter changes are saved in the volatile memory (RAM). Non-volatile storage from RAM to ROM is carried out in the following cases: - p0971 = 1 - change from p0014 = 0 to 1 Re p0014 = 1: With this setting, alarm A01066 followed by alarm A01067 can occur if parameters are continually changed via a fieldbus system. Parameter changes are entered in the volatile memory (RAM) and also in the non-volatile buffer memory. In the following cases, the entries in the buffer memory are transferred into the ROM and then the buffer memory is cleared: - p0971 = 1 - power down/power up the Control Unit - change from p0014 = 1 to 0 Re p0014 = 2: The procedure to clear the entries in the buffer memory is initiated. p0014 is automatically set to 0 after the entries have been cleared.
p0015	Macro drive unit / Macro drv unit
CU240B-2	Access level: 1 Calculated: - Data type: Unsigned32
CU240E-2	Can be changed: $\mathrm{C}, \mathrm{C}(1)$ Scaling: - Data set: -
CU240E-2 F	Units group: - Unit selection: -
	Min Max Factory setting 0 999999 12
Description:	Runs the corresponding macro files. The selected macro file must be available on the memory card/device memory. Example: p0015 = 6 --> the macro file PM000006.ACX is run.
Dependency:	Refer to: p0700, p1000, p1500, r8570
Caution:	When executing a specific macro, the corresponding programmed settings are made and become active.
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.
Note:	The macros in the specified directory are displayed in r8570. r8570 is not in the expert list of the commissioning software. Macros available as standard are described in the technical documentation of the particular product. The parameter is not influenced by setting the factory setting.

p0015	Macro drive unit / Macro drv unit		
CU240B-2 DP	Access level: 1	Calculated: -	Data type: Unsigned32
CU240E-2 DP	Can be changed: C, C(1)	Scaling: -	Data set: -
CU240E-2 DP F	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	Max 999999	Factory setting 7
Description:	Runs the corresponding ma The selected macro file mu Example: p0015 = 6 --> the macro file	able on the memor 06.ACX is run.	ory.
Dependency:	Refer to: p0700, p1000, p1500, r8570		
Caution:	When executing a specific macro, the corresponding programmed settings are made and become active.		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		
Note:	The macros in the specified software. Macros available as standa The parameter is not influen	are displayed in r8 cribed in the techn tting the factory s	the expert list of the commissioning of the particular product.
r0018	Control Unit Firmware-Version / CU FW version		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 4294967295 \end{aligned}$	Factory setting
Description:	Displays the firmware version of the Control Unit.		
Dependency:	Refer to: r0197, r0198		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		
r0020	Speed setpoint smoothed / n_set smth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection: p	
	Min - [rpm]	Max - [rpm]	Factory setting - [rpm]
Description:	Displays the currently smoothed speed setpoint at the input of the speed controller or U/f characteristic (after the interpolator).		
Dependency:	Refer to: r0060		
Note:	Smoothing time constant = The signal is not suitable as The speed setpoint is availa	quantity and may thed (r0020) and	display quantity.

r0021	CO: Actual speed smoothed / n_act smooth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection:	
	Min - [rpm]	Max - [rpm]	Factory setting - [rpm]
Description:	Displays the smoothed actual value of the motor speed.		
Dependency:	Refer to: r0022, r0063		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The speed actual value is available smoothed (r0021, r0022) and unsmoothed (r0063).		
r0022	Speed actual value rpm smoothed / n_act rpm smooth		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: -	Unit selection: -	
	Min - [rpm]	Max - [rpm]	Factory setting - [rpm]
Description:	Displays the smoothed actual value of the motor speed.		
Dependency:	Refer to: r0021, r0063		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The speed actual value is available smoothed (r0021, r0022) and unsmoothed (r0063).		

r0024	Output frequency smoothed / f_outp smooth		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: -	Unit selection: -	
	Min - [Hz]	Max - [Hz]	Factory setting - [Hz]
Description:	Displays the smoothed converter frequency.		
Dependency:	Refer to: r0066		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The output frequency	othed (r0024) and	

CO: Output voltage smoothed / U_outp smooth

Access level: 2	Calculated: -	Data type: FloatingPoint32
Can be changed: -	Scaling: p2001	Data set: -
Units group: -	Unit selection: -	
Min	Max	Factory setting
$-[V \mathrm{Vrms}]$	$-[V r m s]$	
Displays the smoothed output voltage of the power unit.		
Refer to: r0072		
Smoothing time constant = 100 ms		
The signal is not suitable as a process quantity and may only be used as a display quantity.		
The output voltage is available smoothed (r0025) and unsmoothed (r0072).		

r0026	CO: DC link voltage smoothed / Vdc smooth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Data set: -
	Units group: -	Unit selection: -	
	Min $-[V]$	Max - [V]	Factory setting $-[V]$
Description:	Displays the smoothed actual value of the DC link voltage.		
Dependency:	Refer to: r0070		
Notice:	When measuring a DC link voltage < 200 V , for the Power Module (e.g. PM240) a valid measured value is not sup plied. In this case, when an external 24 V power supply is connected, a value of approx. 24 V is displayed in the display parameter.		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The DC link voltage is available smoothed (r0026) and unsmoothed (r0070).		
r0027	CO: Absolute actual current smoothed / I_act abs val smth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Data set: -
	Units group: -	Unit selection: -	
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the smoothed absolute actual current value.		
Dependency:	Refer to: r0068		
Notice:	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.		
Note:	Smoothing time constant $=300 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The absolute current actual value is available smoothed (r0027) and unsmoothed (r0068).		
r0028	Modulation depth smoothed / Mod_depth smth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Data set: -
	Units group: -	Unit selection: -	
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the smoothed actual value of the modulation depth.		
Dependency:	Refer to: r0074		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The modulation depth is available smoothed (r0028) and unsmoothed (r0074).		
r0029	Current actual value field-generating smoothed / Id_act smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Data set: -
	Units group: -	Unit selection: -	
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the smoothed field-generating actual current.		
Dependency:	Refer to: r0076		
Note:	Smoothing time constant $=300 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The field-generating current actual value is available smoothed (r0029) and unsmoothed (r0076).		

r0030	Current actual value torque-generating smoothed / Iq_act smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Data set: -
	Units group: -	Unit selection: -	
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the smoothed torque-generating actual current.		
Dependency:	Refer to: r0078		
Note:	Smoothing time constant $=300 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The torque-generating current actual value is available smoothed (r0030) and unsmoothed (r0078).		

r0031	Actual torque smoothed / M_act smooth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Data set: -
	Units group: 7_1	Unit selection: p0505	
	$\begin{aligned} & \operatorname{Min} \\ & -[\mathrm{Nm}] \end{aligned}$	Max - [Nm]	Factory setting - [Nm]
Description:	Displays the smoothed torque actual value.		
Dependency:	Refer to: r0080		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity. The active current actual value is available smoothed (r0031) and unsmoothed (r0080).		

r0032	CO: Active power actual value smoothed / P_actv_act smth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: r2004	Data set: -
	Units group: 14_10	Unit selection:	
	Min $-[\mathrm{kW}]$	Max - [kW]	Factory setting - [kW]
Description:	Displays the smoothed actual value of the active power.		
Dependency:	Refer to: r0082		
Notice:	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.		
Note:	Power delivered at the motor shaft.		
	The active power is available smoothed (r0032 with 100 ms) and unsmoothed (r0082).		

r0033	Torque utilization smoothed / M_util smooth	
	Access level: $4 \quad$ Calculated: -	Data type: FloatingPoint32
	Can be changed: - Scaling: PERCENT	Data set: -
	Units group: - Unit selection: -	
	$\begin{array}{lc} \operatorname{Min} & \text { Max } \\ -[\%] & -[\%] \end{array}$	Factory setting - [\%]
Description:	Displays the smoothed torque utilization as a percentage. The torque utilization is obtained from the required smoothed torque in reference to the torque limit, scaled using p2196.	
Dependency: Note:	This parameter is only available for vector control. For U/f control r0033 $=0$ Smoothing time constant $=100 \mathrm{~ms}$ The signal is not suitable as a process quantity and may only be used as a The torque utilization is available smoothed (r0033) and unsmoothed (r008 For M_set total (r0079) >0, the following applies: - Required torque $=\mathrm{M}$ _set total - Actual torque limit = M_max upper effective (r1538) For M_set total (r0079) < $=0$, the following applies: - Required torque $=-M_{-}$set total - Actual torque limit = - M_max lower effective (r1539) For the actual torque limit $=0$, the following applies: r0033 $=100 \%$ For the actual torque limit < 0, the following applies: r0033 $=0 \%$	\%. display quantity.
r0034	CO: Motor utilization / Motor utilization	
	Access level: $2 \quad$ Calculated: -	ata type: FloatingPoint32
	Can be changed: - Scaling: PERCENT	Data set: -
	Units group: - Unit selection: -	
	$\begin{array}{lc} \operatorname{Min} & \text { Max } \\ -[\%] & -[\%] \end{array}$	Factory setting - [\%]
Description:	Displays the motor utilization from the thermal I2t motor model.	
Dependency:	The motor utilization is only determined for permanent-magnet synchronous motors and if the 12 t motor model is activated.	
	The motor utilization is formed from the ratio between the 12 motor model temperature (minus 40 Kelvin) and the reference value p0605 (motor overtemperature, fault threshold) - 40 Kelvin. If p0605 is reduced, r0034 increases and the motor temperature remains the same.	
Note:	Smoothing time constant $=100 \mathrm{~ms}$	
	A value of r0034 $=-200.0 \%$ indicates an invalid display, for example, because the thermal $12 t$ motor model was not activated or was incorrectly parameterized.	
r0035	CO: Motor temperature / Mot temp	
	Access level: $2 \quad$ Calculated: -	Data type: FloatingPoint32
	Can be changed: - Scaling: p2006	Data set: -
	Units group: 21_1 Unit selection: p0505	
	Min Max $-\left[{ }^{\circ} \mathrm{C}\right]$ $-\left[{ }^{\circ} \mathrm{C}\right]$	Factory setting - $\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the actual temperature in the motor.	
Note:	For r0035 not equal to $-200.0^{\circ} \mathrm{C}$, the following applies: - this temperature display is valid. - a KTY sensor is connected. - for induction motors, the thermal motor model is activated (p0601 = 0). For r0035 equal to $-200.0^{\circ} \mathrm{C}$, the following applies: - this temperature display is not valid (temperature sensor error). - A PTC sensor or bimetallic NC contact is connected. - for synchronous motors, the thermal motor model is activated (p0601 = 0)	

r0039	Energy consumption / Energy consumption		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min - [kWh]	Max - [kWh]	Factory setting - [kWh]
Description:	Displays the electrical energy used since the last reset. Refer to: p0040		
Dependency:			
p0040	Reset energy consumption display / Energy usage reset		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Setting to reset the energy consumption display (r0039). Procedure:		
	The display is reset and the parameter is automatically set to zero.		
Dependency:	Refer to: r0039		
r0041	Energy usage saved / Energy usage saved		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min - [kWh]	Max - [kWh]	Factory setting - [kWh]
Description:	Displays the saved energy referred to 100 operating hours. Refer to: p0040		
Dependency:			
p0045	Smoothing time constant, display values / T_smth display		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min 0.00 [ms]	$\begin{aligned} & \operatorname{Max} \\ & 1000.00 \text { [ms] } \end{aligned}$	Factory setting 4.00 [ms]
Description:	Sets the smoothing time constant for the following display values: r0063[1], r0068[1], r0080[1], r0082[1].		


```
Note: The value r0046 = 0 indicates that all enable signals for this drive are present.
Bit 00=1 (enable signal missing), if:
- the signal source in p0840 is a 0 signal.
- there is a "switching on inhibited".
Bit 01 = 1 (enable signal missing), if:
- the signal source in p0844 or p0845 is a 0 signal.
Bit 02 = 1 (enable signal missing), if:
- the signal source in p0848 or p0849 is a 0 signal.
Bit 03 = 1 (enable signal missing), if:
- the signal source in p0852 is a 0 signal.
Bit 04 =1 (DC brake active) when:
- the signal source in p1230 has a 1 signal
Bit 10=1 (enable signal missing), if:
- the signal source in p1140 is a 0 signal.
Bit 11 = 1 (enable signal missing) if the speed setpoint is frozen, because:
- the signal source in p1141 is a 0 signal.
- the speed setpoint is entered from jogging and the two signal sources for jogging, bit 0 (p1055) and bit 1 (p1056)
have a }1\mathrm{ signal.
Bit 12 = 1 (enable signal missing), if:
- the signal source in p1142 is a 0 signal.
Bit 16 = 1 (enable signal missing), if:
- there is an OFF1 fault response. The system is only enabled if the fault is removed and was acknowledged and
the "switching on inhibited" withdrawn with OFF1 = 0.
Bit 17 = 1 (enable signal missing), if:
- commissioning mode is selected (p0010>0).
- there is an OFF2 fault response.
- the drive is not operational.
Bit 18=1 (enable signal missing), if:
- OFF3 has still not been completed or an OFF3 fault response is present.
Bit 19=1 (internal pulse enable missing), if:
- sequence control does not have a finished message.
Bit 20=1 (internal DC brake active), if:
- the drive is not in the state "Operation" or in "OFF1/3".
- the internal pulse enable is missing (r0046.19=0).
Bit 21=1 (enable signal missing), if:
- the power unit does not issue an enable signal (e.g. because DC link voltage is too low).
- the holding brake opening time (p1216) has still not expired.
- hibernation is active.
Bit 26=1 (enable signal missing), if:
- the drive is not operational.
Bit 27 = 1 (enable signal missing), if:
- de-magnetization not completed.
Bit 28=1 (enable signal missing), if:
- the holding brake is closed or has still not been opened.
Bit 30=1 (speed controller inhibited), if one of the following reasons is present:
- the pole position identification is active.
- motor data identification is active (only certain steps).
Bit 31=1 (enable signal missing), if:
- the speed setpoint from jog 1 or 2 is entered.
```

r0047	Motor data ident. routine and speed controller optimization / MotID and n_opt			
	Access level: 1	Calculated: -	Data type: Integer16	
	Can be changed: -	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 300 \end{aligned}$	Factory se	
Description:	Displays the actual status for the motor data identification (stationary measurement) and the speed/velocity controller optimization (rotating measurement).			
Value:	0: No measurement			
	115: Measurement q leakage inductance (part 2)			
	120: Speed controller optimization (vibration test)			
	140: Calculate speed controller setting			
	150: Measurement, moment of inertia			
	170: Measurement, magnetizing current and saturation ch			
	195: Measurement q leakage inductance (part 1)			
	200: Rotating measurement selected			
	220: identification, leakage inductance			
	230: Identification, rotor time constant			
	240: Identification, stator inductance			
	250: Identification, stator inductance LQLD			
	270: Identification, stator resistance			
	290: Identification, valve lockout time300:Stationary measurement selected			
Note:	Re r0047 = 300:			
	This value is also displayed if encoder calibration p1990 is selected.			
r0050.0... 1	CO/BO: Command Data Set CDS effective / CDS effective			
	Access level: 3	Calculated: -	Data type: Unsigned8	
	Can be changed: -	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min	Max		
	Min	-	Factory setting	
Description: Bit field:	Displays the effective Command Data Set (CDS).			
	Bit Signal name	1 signal	0 signal	FP
	0001CDS eff., bit 0CDS eff, bit 1	ON	OFF	
		ON	OFF	-
Dependency: Note:	Refer to: p0810, p0811, r0836			
	The Command Data Set selected using a binector input (e.g. p0810) is displayed using r0836.			
r0051.0...	CO/BO: Drive Data Set DDS effective I DDS effective			
	Access level: 2	Calculated: -	Data type: Unsigned8	
	Can be changed: -	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min	Max	Factory setting	
		-		
Description:	Displays the effective Drive Data Set (DDS).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DDS eff., bit 0	ON	OFF	-
	01 DDS eff., bit 1	ON	OFF	-
Dependency:	Refer to: p0820, p0821, r0837			
Note:	When selecting the motor data identification routine and the rotating measurement, the drive data set changeover is suppressed.			

r0052.0... 15	CO/BO: Status word 1 / ZSW 1			
	Access level: 2	Calculated: -	Data type: Unsigned16	
	Can be changed: -	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min	Max	Factory setting	
	-	-		
Description:	Displays status word 1.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Rdy for switch on	Yes	No	-
	01 Ready	Yes	No	-
	02 Operation enabled	Yes	No	-
	03 Fault present	Yes	No	-
	04 Coast down active (OFF2)	No	Yes	-
	05 Quick Stop active (OFF3)	No	Yes	-
	06 Switching on inhibited active	Yes	No	-
	07 Alarm present	Yes	No	-
	08 Deviation, setpoint/actual speed	No	Yes	-
	09 Control request	Yes	No	-
	10 Maximum speed reached	Yes	No	-
	11 I, M, P limit reached	No	Yes	-
	12 Motor holding brake open	Yes	No	-
	13 Alarm motor overtemperature	No	Yes	-
	14 Motor rotates forwards	Yes	No	-
	15 Alarm drive converter overload	No	Yes	-
Caution:	p2080 is used to define the signal sources of the PROFIdrive status word interconnection.			
Note:	The following status bits are displayed in r0052.			
	Bit 00: r0899 Bit 0			
	Bit 01: r0899 Bit 1			
	Bit 02: r0899 Bit 2			
	Bit 03: r2139 Bit 3 (or r1214 Bit 10, if p1210 > 0)			
	Bit 04: r0899 Bit 4			
	Bit 05: r0899 Bit 5			
	Bit 06: r0899 Bit 6			
	Bit 07: 22139 Bit 7			
	Bit 08: 22197 Bit 7			
	Bit 09: r 0899 Bit 7			
	Bit 10: 22197 Bit 6			
	Bit 11: r0056 Bit 13 (negated)			
	Bit 12: r0899 Bit 12			
	Bit 13: r2135 Bit 14 (negated)			
	Bit 14: r2197 Bit 3			
	Bit 15: r2135 Bit 15 (negated)			

r0054.0... 15	CO/BO: Control word 1 / STW 1			
	Access level: 2	Calculated: -	Data type: Unsigned16	
	Can be changed: - S	Scaling: -	Data set: -	
	Units group: - U	Unit selection: -		
	Min	Max	Factory setting	
	- -			
Description:	Displays control word 1.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 ON/OFF1	Yes	No	-
	01 OC / OFF2	Yes	No	-
	02 OC / OFF3	Yes	No	-
	03 Operation enable	Yes	No	-
	04 Ramp-function generator enable	Yes	No	-
	05 Continue ramp-function generator	r Yes	No	-
	06 Speed setpoint enable	Yes	No	-
	07 Acknowledge fault	Yes	No	-
	08 Jog bit 0	Yes	No	3030
	09 Jog bit 1	Yes	No	3030
	10 Master ctrl by PLC	Yes	No	-
	11 Direction reversal (setpoint)	Yes	No	-
	13 Motorized potentiometer raise	Yes	No	-
	14 Motorized potentiometer lower	Yes	No	-
	15 CDS bit 0	Yes	No	-
Note:	The following control bits are displayed in r0054:			
	Bit 00: r0898 Bit 0			
	Bit 01: r0898 Bit 1			
	Bit 02: r0898 Bit 2			
	Bit 03: r0898 Bit 3			
	Bit 04: r0898 Bit 4			
	Bit 05: r0898 Bit 5			
	Bit 06: r0898 Bit 6			
	Bit 07: r2138 Bit 7			
	Bit 08: r0898 Bit 8			
	Bit 09: r0898 Bit 9			
	Bit 10: r0898 Bit 10			
	Bit 11: r1198 Bit 11			
	Bit 13: r1198 Bit 13			
	Bit 14: r1198 Bit 14			
	Bit 15: r0836 Bit 0			
	Re bit 10:			
	If p0700 $=2$ is set, bit 10 always shows "1".			

r0055.0... 15	CO/BO: Supplementary control word / Suppl STW			
	Access level: 3	Calculated: -	Data type: Unsigned16	
	Can be changed: -	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min	Max	Factory setting	
	-	-		
Description:	Displays supplementary control word.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Fixed setp bit 0	Yes	No	-
	01 Fixed setp bit 1	Yes	No	-
	02 Fixed setp bit 2	Yes	No	-
	03 Fixed setp bit 3	Yes	No	-
	04 DDS select. bit 0	Yes	No	-
	05 DDS select. bit 1	Yes	No	-
	08 Technology controller enable	Yes	No	-
	09 DC braking enable	Yes	No	-
	11 Droop enable	Yes	No	-
	12 Torque control active	Yes	No	-
	13 External fault 1 (F07860)	No	Yes	-
	15 CDS bit 1	Yes	No	-
Note:	The following control bits are displayed in r0055:			
	Bit 00: r1198 Bit 0			
	Bit 01: r1198 Bit 1			
	Bit 02: r1198 Bit 2			
	Bit 03: r1198 Bit 3			
	Bit 04: r0837 Bit 0			
	Bit 05: r0837 Bit 1			
	Bit 08: r2349 Bit 0 (negated)			
	Bit 09: r1239 Bit 11			
	Bit 11: r1406 Bit 11			
	Bit 12: r1406 Bit 12			
	Bit 13: r2138 Bit 13			
	Bit 15: r0836 Bit 1			

r0060	CO: Speed setpoint before the setpoint filter / n_set before filt.		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection: p0505	
	Min - [rpm]	Max - [rpm]	Factory setting - [rpm]
Description: Dependency: Note:	Displays the actual speed setpoint at the input of the speed controller or U/f characteristic (after the interpolator). Refer to: r0020		
r0062	CO: Speed setpoint after the filter / n_set after filter		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection: p0505	
	Min - [rpm]	Max - [rpm]	Factory setting - [rpm]
Description:	Displays the actual speed setpoint after the setpoint filters.		
r0063[0...2]	CO: Speed actual value / n_act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection: p0505	
	Min - [rpm]	Max - [rpm]	Factory setting - [rpm]
Description: Index:	Displays the actual [0] = Unsmoothed [1] = Smoothed with [2] = Calculated from	d-loop speed control an	
Dependency:	Refer to: r0021, r0022		
Note:	The speed actual value r0063[0] is additionally displayed - smoothed with p0045-in r0063[1]. The speed (r0063[2]) calculated from the output frequency and slip can only be compared with the speed actual value (r0063[0]) in the steady-state.		
r0064	CO: Speed controller system deviation / n_ctrl system dev		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection: p0505	
	Min - [rpm]	Max - [rpm]	Factory setting - [rpm]
Description:	Displays the actual system deviation of the speed controller.		
r0065	Slip frequency / f_Slip		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 2_1	Unit selection: p0505	
	$\begin{aligned} & \operatorname{Min} \\ & -[H z] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{Hz}] \end{aligned}$	Factory setting - [Hz]
Description:	Displays the slip frequency for induction motors (ASM).		

r0066	CO: Output frequency / f_outp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 2_1	Unit selection: p0505	
	$\operatorname{Min}_{-[\mathrm{Hz}]}$	$\operatorname{Max}_{-[\mathrm{Hz}]}$	Factory setting - [Hz]
Description:	Displays the output frequency of the power unit.		
Dependency:	Refer to: r0024		
Note:	The output frequency is available smoothed (r0024) and unsmoothed (r0066).		
r0067	CO: Output current, maximum / I_outp max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Data set: -
	Units group: 6_2	Unit selection: p0505	
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the maximum output current of the power unit.		
Dependency:	The maximum output current is determined by the parameterized current limit and the motor and converter thermal protection.		
	Refer to: p0290, p0640		
r0068[0...1]	CO: Absolute current actual value / I_act abs val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Data set: -
	Units group: 6_2	Unit selection: p0505	
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays actual absolute current.		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed with p0045 }} \end{aligned}$		
Dependency:	Refer to: r0027		
Notice:	The value is updated with the current controller sampling time.		
Note:	Absolute current value $=\operatorname{sqrt}\left(\mathrm{Iq} \mathrm{\wedge}^{\wedge} 2+\mathrm{Id} \wedge 2\right)$		
	The absolute value of the current actual value is available smoothed (r0027 with 300 ms , r0068[1] with p0045) and unsmoothed (r0068[0]).		
r0069[0...6]	CO: Phase current actual value II_phase act value		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Data set: -
	Units group: 6_5	Unit selection: p0505	
	$\begin{gathered} \operatorname{Min} \\ -[A] \end{gathered}$	$\begin{gathered} \operatorname{Max} \\ -[\mathrm{A}] \end{gathered}$	Factory setting - [A]
Description:	Displays the measured actual phase currents as peak value.		
Index:	$\begin{aligned} & {[0]=\text { Phase U }} \\ & {[1]=\text { Phase } V} \\ & {[2]=\text { Phase } W} \\ & {[3]=\text { Phase U offset }} \\ & {[4]=\text { Phase } V \text { offset }} \\ & {[5]=\text { Phase } W \text { offset }} \\ & {[6]=\text { Total U, V, W }} \end{aligned}$		
Note:	In indices $3 \ldots 5$, the offset currents of the 3 phases, which are added to correct the phase currents, are displayed. The sum of the 3 corrected phase currents is displayed in index 6 .		

r0070	CO: Actual DC link voltage / Vdc act val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Data set: -
	Units group: 5_2	Unit selection: p0505	
	$\begin{gathered} \operatorname{Min} \\ -[V] \end{gathered}$	$\begin{aligned} & \text { Max } \\ & -[V] \end{aligned}$	Factory setting - [V]
Description:	Displays the measured actual value of the DC link voltage.		
Dependency:	Refer to: r0026		
Notice:	When measuring a DC link voltage < 200 V , for the Power Module (e.g. PM240) a valid measured value is not supplied. In this case, when an external 24 V power supply is connected, a value of approx. 24 V is displayed in the display parameter.		
Note:	The DC link voltage is available smoothed (r0026) and unsmoothed (r0070).		
r0071	Maximum output voltage / U_output max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Data set: -
	Units group: 5_1	Unit selection: p0505	
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the maximum output voltage.		
Dependency:	The maximum output voltage depends on the actual DC link voltage (rOO 070) and the maximum modulation depth (p1803).		
Note:	As the (driven) motor load increases, the maximum output voltage drops as a result of the reduction in $D C$ link voltage.		
r0072	CO: Output voltage / U_output		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Data set: -
	Units group: 5_1	Unit selection: p0505	
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the actual output voltage of the power unit.		
Dependency:	Refer to: r0025		
Note:	The output voltage is available smoothed (r0025) and unsmoothed (r0072).		
r0073	Maximum modulation depth / Modulat_depth max		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	$\begin{gathered} \operatorname{Min}_{-[\%]} \end{gathered}$	$\begin{gathered} \operatorname{Max} \\ -[\%] \end{gathered}$	Factory setting - [\%]
Description:	Displays the maximum modulation depth. Refer to: p1803		
Dependency:			

r0074	CO: Modulat_depth / Modulat_depth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the actual modulation depth.		
Dependency:	Refer to: r0028		
Note:	For space vector modulation, 100\% corresponds to the maximum output voltage without overcontrol.		
	Values above 100 \% indicate an overcontrol condition - values below 100% have no overcontrol.		
	The phase voltage (phase-to-phase, rms) is calculated as follows:(r0074 x r0070) / (sqrt(2) $\times 100 \%$).		
	The modulation depth is available smoothed (r0028) and unsmoothed (r0074).		
r0075	CO: Current setpoint field-generating / Id_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Data set: -
	Units group: 6_2	Unit selection: p0505	
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the field-generating current setpoint (Id_set).		
Note:	This value is irrelevant for the U/f control mode.		
r0076	CO: Current actual value field-generating / Id_act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Data set: -
	Units group: 6_2	Unit selection: p0505	
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the field-generating current actual value (Id_act).		
Dependency:	Refer to: r0029		
Note:	This value is irrelevant for the U/f control mode.		
	The field-generating current actual value is available smoothed (r0029) and unsmoothed (r0076).		
r0077	CO: Current setpoint torque-generating / Iq_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Data set: -
	Units group: 6_2	Unit selection: p0505	
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the torque/force generating current setpoint.		
Note:	This value is irrelevant for the U/f control mode.		

r0078	CO: Current actual value torque-generating / Iq_act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Data set: -
	Units group: 6_2	Unit selection: p0505	
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description: Dependency: Note:	Displays the torque- Refer to: r0030 This value is irreleva The torque-generating	tt actual value (lq_act). trol mode. value is available smoot	300 ms) and unsmoothed (r0078).
r0079	CO: Torque setpoint / M_set total		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Data set: -
	Units group: 7_1	Unit selection: p0505	
	Min - [Nm]	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{Nm}] \end{aligned}$	Factory setting - [Nm]
Description:	Displays the torque setpoint at the output of the speed controller.		
r0080[0...1]	CO: Torque actual value / M_act		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Data set: -
	Units group: 7_1	Unit selection: p0505	
	Min - [Nm]	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{Nm}] \end{aligned}$	Factory setting - [Nm]
Description: Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed with p0045 }} \end{aligned}$		
Dependency:	Refer to: r0031		
Note:	The torque actual value is available smoothed (r0031 with 100 ms , r0080[1] with p0045) and unsmoothed (r0080[0]).		
r0081	CO: Torque utilization / M_Utilization		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & -[\%] \end{aligned}$	$\underset{-[\%]}{\operatorname{Max}}$	Factory setting - [\%]
Description:	Displays the torque utilization as a percentage. The torque utilization is obtained from the required smoothed torque referred to the torque limit.		
Dependency:	This parameter is only available for vector control. For U/f control r0081 $=0 \%$. Refer to: r0033		
Note:	The torque utilization is available smoothed (r0033) and unsmoothed (r0081). The torque utilization is obtained from the required torque referred to the torque limit as follows: - Positive torque: r0081 $=($ r0079 / r1538 $) * 100 \%$ - Negative torque: r0081 = (-r0079 / -r1539) * 100%		

r0082[0...2]	CO: Active power actual value / P_act		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: r2004	Data set: -
	Units group: 14_5	Unit selection:	
	Min $-[\mathrm{kW}]$	$\begin{aligned} & \operatorname{Max} \\ & -[k W] \end{aligned}$	Factory setting - [kW]
Description:	Displays the instantaneous active power.		
Index:	[0] = Unsmoothed [1] = Smoothed with [2] = Electric power		
Dependency:	Refer to: r0032		
Note:	The mechanical active power is available smoothed (r0032 with 100 ms , $\mathrm{rO082}[1]$ with p0045) and unsmoothed (r0082[0]).		

r0083	CO: Flux setpoint / Flex setp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	$-[\%]$	$-[\%]$	$-[\%]$
Description:	Displays the flux setpoint.		

r0084[0...1] CO: Flux actual value / Flux act val

Access level: 4	Calculated: -	Data type: FloatingPoint32
Can be changed: -	Scaling: PERCENT	Data set: -
Units group: -	Unit selection: -	
Min	Max	Factory setting
$-[\%]$	$-[\%]$	$-[\%]$

Description: Displays the flux actual value.
Index: $\quad[0]=$ Unsmoothed
[1] = Smoothed

r0087	CO: Actual power factor / Cos phi act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	-	Factory setting
	-	-	
Description:	Displays the actual active power factor.		

r0089[0...2]	Actual phase voltage / U_phase act val		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Data set: -
	Units group: 5_3	Unit selection: p0505	
	$\begin{gathered} \operatorname{Min} \\ -[V] \end{gathered}$	$\begin{gathered} \operatorname{Max} \\ -[\mathrm{V}] \end{gathered}$	Factory setting - [V]
Description:	Displays the actual phase voltage.		
Index:	$\begin{aligned} & {[0]=\text { Phase } U} \\ & {[1]=\text { Phase } V} \\ & {[2]=\text { Phase } W} \end{aligned}$		
Note:	The values are determined from th	ransistor power-on duration	

r0197	Bootloader vers / Bootloader vers		
	Access level: 4	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\underline{M i n}$	Max	Factory setting
Description:	Displays the bootloader version.		
Dependency:	Refer to: r0018, $\mathrm{rO198}$		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		
r0198[0...1]	BIOS/EEPROM data version / BIOS/EEPROM vers		
	Access level: 4	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Displays the BIOS and EEPROM data version.		
	r0198[0]: BIOS version		
	r0198[1]: EEPROM data version		
Dependency:	Refer to: r0018, r0197		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		
p0199[0...24]	Drive object name / DO name		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: C	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min 0	Max 65535	Factory setting
Description:	Freely assignable name for a drive object.		
	In the commissioning software, this name cannot be entered using the expert list, but is specified in the configuration assistant. The object name can be subsequently modified in the Project Navigator using standard Windows resources.		
Note:	The parameter is not influenced by setting the factory setting.		
r0200[0...n]	Power unit code number actual / PU code no. act		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Data set: PDS
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	-	
Description:	Displays the unique code number of the power unit.		
Note:			

p0210	Drive unit line supply voltage / V_connect
	Access level: 3 Calculated: - Data type: Unsigned16
	Can be changed: $\mathrm{C}(2), \mathrm{T}$ Scaling: - Data set: -
	Units group: - Unit selection: -
	Min Max Factory setting $1[\mathrm{~V}]$ $63000[\mathrm{~V}]$ 400 [V]
Description:	Sets the drive unit supply voltage (rms value of the phase-to-phase line supply voltage).
Dependency:	Set p1254, p1294 (automatic detection of the Vdc switch-on levels) $=0$.
	The switch-in thresholds of the Vdc_max controller are then directly determined using p0210.
	In the case of regenerative power units (PM250, PM260), the regenerative power limit for U/f control current limitation control is calculated as a proportion of the supply voltage p0210. Therefore, p0210 should not be set to a value higher than the actual line voltage.
Caution:	If the line supply voltage is higher than the entered value, the Vdc controller may be automatically de-activated in some cases to prevent the motor from accelerating. In this case, an appropriate alarm is output.
Note:	Setting ranges for p0210 as a function of the rated power unit voltage:
	U_rated $=230 \mathrm{~V}$:
	- p0210 = $200 . . .240 \mathrm{~V}$
	U_rated $=400 \mathrm{~V}$:
	- p0210 = 380 ... 480 V
	U_rated $=500 \mathrm{~V}$:
	- p0210 $=500 \ldots 600 \mathrm{~V}$
	U_rated $=690 \mathrm{~V}$:
	- p0210 = $660 \ldots 690 \mathrm{~V}$
	The pre-charging switch-in threshold for the DC link voltage (Vdc) is calculated from p0210:
	Vdc_pre $=$ p0210 * 0.82 * 1.35
	The undervoltage thresholds for the DC link voltage (Vdc) are calculated from p0210 as a function of the rated power unit voltage:
	U_rated $=400 \mathrm{~V}$:
	- U_min $=$ p0210 * $0.78>360 \mathrm{~V}$
	U_rated $=500 \mathrm{~V}$:
	- U_min = p0210 * 0.76
	U_rated $=690 \mathrm{~V}$:-U min $=$ p $0210 * 0.74>450 \mathrm{~V}$

p0233	Power unit motor reactor / PU mot reactor		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(2), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{mH}] \end{aligned}$	Max 1000.000 [mH]	Factory setting $0.000[\mathrm{mH}]$
Description:	Enter the inductance of a filter connected at the power unit output.		
Dependency:	This parameter is automatically pre-set when you select a filter via p0230 if a SIEMENS filter is defined for the power unit.		
	Refer to: p0230		
Note:	When exiting the quick commissioning using $\mathrm{p} 3900=1$, the parameter value is set to the value of the defined SIEMENS filter or to zero. For this reason, the parameter value of a third-party filter only has to be entered outside the commissioning phase $(\mathrm{p} 0010=0)$ and then the controller calculation ($\mathrm{p} 0340=3$) is carried out.		
p0234	Power unit sine-wave filter capacitance / PU sine filter C		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(2), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min $0.000[\mu \mathrm{~F}]$	Max $1000.000[\mu \mathrm{~F}]$	Factory setting $0.000[\mu \mathrm{~F}]$
Description:	Enters the capacitance of a sine-wave filter connected at the power unit output.		
Dependency:	This parameter is automatically pre-set when you select a filter via p0230 if a SIEMENS filter is defined for the power unit.		
	Refer to: p0230		
Note:	The parameter value includes the sum of all of the capacitances of a phase connected in series (phase - ground). When exiting the quick commissioning using p3900 $=1$, the parameter value is set to the value of the defined SIEMENS filter or to zero. For this reason, the parameter value of a third-party filter only has to be entered outside the commissioning phase ($\mathrm{p} 0010=0$). The parameter cannot be changed if the power unit (e.g. PM260) is equipped with an internal sine-wave filter.		
r0238	Internal power unit resistance / PU R internal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min - [ohm]	Max - [ohm]	Factory setting - [ohm]
Description:	Displays the internal resistance of the power unit (IGBT and line resistance).		

p0278	DC link voltage undervoltage threshold reduction / Vdc U_under red		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min_{-80}	Max 0 [V]	Factory setting 0 [V]
Description: Dependency:	Sets the absolute value by which the threshold to initiate the undervoltage fault (F30003) is reduced. Refer to: p0210, r0296 Refer to: F30003		
Notice:	When using a Control Supply Module (CSM) for 24 V supply from the DC link, the minimum continuous DC link voltage may not lie below 430 V . DC link voltages in the range $300 \ldots 430 \mathrm{~V}$ are permissible up to a duration of 1 min . For chassis power units, this parameter has no significance.		
Note:	The resulting shutdown threshold can be read in r0296 and is dependent on the selected rated voltage (p0210) and the power unit being used.		
p0287[0...1]	Ground fault monitoring thresholds / Gnd flt threshold		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.0 \text { [\%] } \end{aligned}$	Factory setting [0] 6.0 [\%]
			[1] 16.0 [\%]
Description:	Sets the shutdown thresholds for the ground fault monitoring. The setting is made as a percentage of the maximum power unit current (r0209).		
Index:	$[0]=$ Threshold at which pre-charging starts [1] = Threshold at which pre-charging stops		
Dependency:	Refer to: F30021		
r0289	CO: Maximum power unit output current / PU I_outp max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Data set: -
	Units group: -	Unit selection: -	
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the actual maximum output current of the power unit taking into account derating factors.		

p0294	Power unit alarm with I2t overload / PU I2t alrm thresh		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min}_{10.0} \\ & \text { [\%] } \end{aligned}$	Max 100.0 [\%]	Factory setting 95.0 [\%]
Description:	Sets the alarm threshold for the 12t power unit overload.		
Dependency:	Refer to: r0036, p0290		
	Refer to: A07805		
Note:	The 12 t fault threshold is 100%. If this value is exceeded, fault F30005 is output.		
p0295	Fan run-on time / Fan run-on time		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0[s] \end{aligned}$	Max 600 [s]	Factory setting 0 [s]
Description:	Sets the fan run-on time after the pulses for the power unit have been canceled.		
Note:	- Under certain circumst sively high heat sink tem - For values less than 1 - for a PM230 power unit	can continue to ru time for the fan is the parameter is ine	as set (e.g. as a result of the exces-
r0296	DC link voltage undervoltage threshold / Vdc U_lower_thresh		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{gathered} \operatorname{Min} \\ -[\mathrm{V}] \end{gathered}$	$\begin{gathered} \operatorname{Max} \\ -[\mathrm{V}] \end{gathered}$	Factory setting $-[\mathrm{V}]$
Description:	If the DC link voltage falls below this threshold, the power unit is shut down due to a DC link undervoltage condition (F30003).		
Dependency:	Refer to: p0278		
	Refer to: F30003		
r0297	DC link voltage overvoltage threshold / Vdc U_upper_thresh		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & -[V] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & -[V] \end{aligned}$	Factory setting - [V]
Description: Dependency:	If the DC link voltage exceeds the threshold specified here, the drive unit is tripped due to DC link overvoltage. Refer to: F30002		

r0313[0...n]	Motor pole pair number, actual (or calculated) / Mot PolePairNo act		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Displays the number of motor pole pairs. The value is used for internal calculations. r0313 = 1: 2-pole motor r0313 = 2: 4-pole motor, etc.		
Dependency:	For p0314>0, the entered value is displayed in r0313.		
	For p0314 $=0$, the pole pair number (r0313) is automatically calculated from the rated power (p 0307), rated frequency (p0310) and rated speed (p0311).		
	Refer to: p0307, p0310, p0311, p0314		
Note:	For the automatic calculation, the pole pair number is set to the value of 2 if the rated speed or the rated frequency is zero.		

| p0314[0...n] | Motor pole pair number / Mot pole pair No. | |
| :--- | :--- | :--- | :--- |
| | Calculated: - | |
| | Access level: 3 | Sata type: Unsigned16 |

p0325[0...n]	Motor pole position identification current, 1st phase / Mot PolID I 1st ph
	Access level: 4 Calculated: - Data type: FloatingPoint32
	Can be changed: U, T Scaling: - Data set: MDS
	Units group: - Unit selection: -
	Min Max Factory setting 0.000 [Arms] 10000.000 [Arms] 0.000 [Arms]
Description:	Sets the current for the 1st phase of the two-stage technique for pole position identification routine. The current of the 2 nd phase is set in p0329. The two-stage technique is selected with p1980 $=4$.
Dependency:	Refer to: p0329, p1980, r1984, r1985, r1987
Notice:	When the motor code (p 0301) is changed, it is possible that p0325 is not pre-assigned. p0325 can be pre-assigned using p0340 $=3$.
Note:	The value is automatically pre-assigned for the following events: - For p0325 $=0$ and automatic calculation of the closed-loop control parameters ($\mathrm{p} 0340=1,2,3$). - for quick commissioning (p3900 = 1, 2, 3).

p0326[0...n]	Motor stall torque correction factor / Mot M_stall_corr		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 5[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 300[\%] \end{aligned}$	Factory setting 100 [\%]
Description:	Sets the correction factor for the stall torque/force at a 600 V DC link voltage.		
Caution:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (refer to p0300).		

p0327[0...n]	Optimum motor load angle / Mot phi_load opt		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	$\begin{aligned} & \left.\operatorname{Min}^{0.0}{ }^{[}\right] \end{aligned}$	Max $\left.135.0{ }^{[}{ }^{\circ}\right]$	Factory setting $\left.90.0{ }^{[}{ }^{\circ}\right]$
Description:	Sets the optimum load angle for synchronous motors with reluctance torque. The load angle is measured at the rated motor current.		
Caution:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	This parameter has no significance for induction motors.		
	For synchronous motors without reluctance torque, a angle of 90 degrees must be set.		
	When quick commissioning is exited with $\mathrm{p} 3900>0$, then the parameter is reset if a catalog motor has not been selected (refer to p0300).		
p0328[0...n]	Motor reluctance torque constant / Mot kT_reluctance		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	$\operatorname{Min}_{-1000.00[m H]}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00[\mathrm{mH}] \end{aligned}$	Factory setting 0.00 [mH]
Description:	Sets the reluctance torque constant for synchronous motors with reluctance torque (e.g. 1FE ... motors). This parameter has no significance for induction motors.		
Caution:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	For synchronous motors without reluctance torque, the value 0 must be set.		
p0329[0...n]	Motor pole position identification current / Mot PolID current		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min 0.00 [Arms]	Max 10000.00 [Arms]	Factory setting 0.00 [Arms]
Description:	Sets the current for the pole position identification routine. For a two-stage technique, the current is set for the 2nd phase.		
Dependency:	Refer to: p0325, p1980, r1984, r1985, r1987		
Caution:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		

r0330[0...n]	Rated motor slip / Mot slip_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	$\operatorname{Min}_{-[\mathrm{Hz}]}$	$\begin{aligned} & \operatorname{Max}_{-[\mathrm{Hz}]} \end{aligned}$	Factory setting $-[\mathrm{Hz}]$
Description:	Displays the rated motor slip.		
Dependency:	The rated slip is calculated from the rated frequency, rated speed and number of pole pairs. Refer to: p0310, p0311, r0313		
Note:	The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		

r0331[0...n]	Actual motor magnetizing current/short-circuit current / Mot I_mag_rtd act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: MDS
	Units group: -	Unit selectio	
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Induction motor:		
	Displays the rated magnetizing current from p0320.		
	For p0320 $=0$, the internally calculated magnetizing current is displayed.		
	Synchronous motor:		
	Displays the rated short-circuit current from p0320.		
Dependency:	If p0320 was not ent	rameter is calc	ate parameters.

r0332[0...n]	Rated motor power factor / Mot cos_phi_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: MDS
	Units group: -	Unit selection	
	Min	Max	Factory setting
Description:	Displays the rated power factor for induction motors.		
	For IEC motors, the following applies ($0100=0$):		
	For $\mathrm{p} 0308=0$, the internally-calculated power factor is displayed.		
	For p0308 >0, this value is displayed.		
	For NEMA motors, the following applies (p0100 = 1):		
	For 00309 = 0 , the internally-calculated power factor is displayed.		
	For p0309 > 0, this value is converted into the power factor and displayed.		
Dependency:	If p0308 is not entered, the parameter is calculated from the rating plate parameters.		
Note:	The parameter is not used for synchronous motors (p0300 = 2xx).		
r0333[0...n]	Rated motor torque / Mot M_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: MDS
	Units group: 7_4	Unit selection	
	Min - [Nm]	Max - [Nm]	Factory setting - [Nm]
Description:	Displays the rated motor torque.		
Dependency:	IEC drives ($\mathrm{p} 0100=0$): unit Nm		
	NEMA drives ($\mathrm{p} 0100=1$): unit lbf ft		
Note:	For induction motors, r0333 is calculated from p0307 and p0311.		
	For synchronous motors, r0333 is calculated from p0305, p0316, p0327 and p0328.		

p0341[0...n]	Motor moment of inertia / Mot M_mom of inert		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: MDS
	Units group: 25_1	Unit selection: p0100	
	Min 0.000000 [kgm²]	Max $100000.000000\left[\mathrm{kgm}^{2}\right]$	Factory setting $0.000000\left[\mathrm{kgm}^{2}\right]$
Description: Dependency:	Sets the motor moment of inertia (without load).		
	IEC drives ($\mathrm{p} 0100=0$): unit $\mathrm{kg} \mathrm{m} \mathrm{m}^{\text {2 }}$		
	NEMA drives ($\mathrm{p} 0100=1$): unit lb ft^2		
	The parameter value is included, together with p0342, in the rated starting time of the motor.		
	Refer to: p0342, r0345		
Caution:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The product of p0341 * 0342 is used when the speed controller (p0340 $=4$) is calculated automatically.		
p0342[0...n]	Ratio between the total and motor moment of inertia / Mot MomInert Ratio		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	$\operatorname{Min}_{1.000}$	Max 10000.000	Factory setting 1.000
Description:	Sets the ratio between the total moment of inertia/mass (load + motor) and the intrinsic motor moment of inertia/mass (no load).		
Dependency:	This means that together with p0341, the rated starting (accelerating time) of the motor is calculated for a vector drive.		
	Refer to: p0341, r0345		
Note:	The product of p0341 * p0342 is used when the speed controller (p0340 $=4$) is calculated automatically.		
r0343[0...n]	Rated motor current identified / Mot I_rated ident		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [Arms] } \end{aligned}$	Max 10000.00 [Arms]	Factory setting - [Arms]
Description:	Displays the identified rated motor current.		
p0344[0...n]	Motor weight (for the thermal motor model) / Mot weight th mod		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{T}$	Scaling: -	Data set: MDS
	Units group: 27_1	Unit selection: p0100	
	Min 0.0 [kg]	Max 50000.0 [kg]	Factory setting 0.0 [kg]
Description:	Sets the motor weight.		
Dependency:	IEC drives (p0100 = 0): unit kg		
	NEMA drives (p0100 = 1): unit lb		
Caution:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter influences the thermal 3 mass model of the induction motor. The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		

r0345[0...n]	Nominal motor starting time / Mot t_start_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min - [s]	Max - [s]	Factory setting - [s]
Description:	Displays the rated motor starting time. This time corresponds to the time from standstill up to reaching the motor rated speed and the acceleration with motor rated torque (r0333).		
Dependency:	Refer to: r0313, r0333, p0341, p0342		
p0346[0...n]	Motor excitation build-up time / Mot t_excitation		
	Access level: 3	Calculated: p0340 = 1,3	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \text { [s] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 20.000 \text { [s] } \end{aligned}$	Factory setting 0.000 [s]
Description:	This involves the delay time between enabling the pulses and enabling the ramp-function generator. The induction motor is magnetized during this time.		
	If there is insufficient magnetization under load or if the acceleration rate is too high, then an induction motor can stall (refer to the note).		
Note:	The parameter is calculated using p0340 $=1,3$.		
	For induction motors, the result depends on the rotor time constant (r0384). If this time is excessively reduced, this can result in an inadequate magnetizing of the induction motor. This is the case if the current limit is reached while building up magnetizing. For induction motors, the parameter cannot be set to 0 s (internal limit: 0.1 * r0384).		
	For permanent-magnet synchronous motors and vector control, the value depends on the stator time constant (r0386). Here, it defines the time to establish the current for encoderless operation immediately after the pulses have been enabled.		
p0347[0...n]	Motor de-excitation time / Mot t_de-excitat.		
	Access level: 3	Calculated: p0340 = 1,3	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{~s}] \end{aligned}$	Max $20.000 \text { [s] }$	Factory setting 0.000 [s]
Description:	Sets the de-magnetizing time (for induction motors) after the inverter pulses have been canceled. The inverter pulses cannot be switched in (enabled) within this delay time.		
Note:	if this time is shortened too much, then this can result in an inadequate de-magnetizing of the induction motor and in an overcurrent condition when the pulses are subsequently enabled (only when the flying restart function is activated and the motor is rotating).		

p0350[0...n]	Motor stator resistance, cold / Mot R_stator cold		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,2$	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	0.00000 [ohm]	2000.00000 [ohm]	0.00000 [ohm]
Description:	Sets the stator resistance of the motor at ambient temperature p0625.		
Dependency:	Refer to: p0625, r1912		
Caution:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The motor identification routine determines the stator resistance from the total stator resistance minus the cable resistance (p0352).		
p0352[0...n]	Cable resistance / Mot R_cable cold		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	0.00000 [ohm]	120.00000 [ohm]	0.00000 [ohm]
Description:	Resistance of the power cable between the power unit and motor.		
	The cable resistance should be entered prior to motor data identification. If it is used subsequently, the difference by which p0352 was changed must be subtracted from the stator resistance p0350 or motor data identification must be repeated.		
Note:	The parameter influences the temperature adaptation of the stator resistance.		
	The motor identification sets the cable resistance to 20% of the measured total resistance if p0352 is zero at the time that the measurement is made. If p0352 is not zero, then the value is subtracted from the measured total stator resistance to calculate stator resistance p0350. In this case, p0350 is a minimum of 10% of the measured value. The cable resistance is reset when quick commissioning is exited with p3900 >0.		
p0354[0...n]	Motor rotor resistance cold / Mot R_r cold		
	Access level: 3	Calculated: p0340 = 1,2	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min 0.00000 [ohm]	$\begin{aligned} & \operatorname{Max} \\ & 300.00000 \text { [ohm] } \end{aligned}$	Factory setting 0.00000 [ohm]
Description:	Sets the rotor/secondary section resistance of the motor at the ambient temperature p0625.		
	This parameter value is automatically calculated using the motor model ($\mathrm{p} 0340=1,2$) or using the motor data identification routine (p1910).		
Dependency:	Refer to: p0625		
Caution:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter is not used for synchronous motors (p0300 = 2).		

p0357[0...n]	Motor stator inductance, d axis / Mot L_stator d		
	Access level: 3	Calculated: p0340 = 1,2	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00000[\mathrm{mH}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00000[m H] \end{aligned}$	Factory setting 0.00000 [mH]
Description:	Sets the stator direct-axis inductance of the synchronous motor.		
	This parameter value is automatically calculated using the motor model (p0340 $=1,2$) or using the motor identification routine (p 1910).		
Note:	For permanent-magnet synchronous motors ($\mathrm{p} 0300=2$), this is the non-saturated value and is ideal for a low current.		
p0358[0...n]	Motor rotor leakage inductance / Mot L_rot leak		
	Access level: 3	Calculated: p0340 = 1,2	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00000[\mathrm{mH}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00000[m H] \end{aligned}$	Factory setting $0.00000[\mathrm{mH}]$
Description:	Sets the rotor/secondary section leakage inductance of the motor.		
	The value is automatically calculated using the motor model ($\mathrm{p} 0340=1,2$) or using the motor identification routine (p1910).		
Caution:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	If the rotor leakage inductance (p 0358) for induction motors is changed outside the commissioning phase (p0010 > 0), then the magnetizing inductance (p 0360) is automatically adapted to the new EMF (r0337). You are then advised to repeat the measurement for the saturation characteristic (p1960).		

p0360[0...n]	Motor magnetizing inductance / Mot Lh		
	Access level: 3	Calculated: p0340 = 1,2	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min $0.00000[\mathrm{mH}]$	Max $10000.00000[\mathrm{mH}]$	Factory setting $0.00000[\mathrm{mH}]$
Description:	This parameter value is automatically calculated using the motor model ($\mathrm{p} 0340=1,2$) or using the motor identification routine (p 1910).		
Caution:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter is not used for synchronous motors (p0300 = 2).		
p0362[0...n]	Motor saturation characteristic flux 1 / Mot saturat.flux 1		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min $10.0 \text { [\%] }$	$\begin{aligned} & \operatorname{Max} \\ & 300.0 \text { [\%] } \end{aligned}$	Factory setting 60.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the y coordinate (flux) for the 1st value pair of the characteristic. Sets the first flux value of the saturation characteristic as a [\%] referred to the rated motor flux (100 \%).		
Dependency:	The following applies for the flux values: p0362 < p0363 < p0364 < p0365		
Note:	For induction motors, p0362 = 100% corresponds to the rated motor flux. When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (refer to p0300).		
p0363[0...n]	Motor saturation characteristic flux 2 / Mot saturat.flux 2		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min $10.0 \text { [\%] }$	Max $300.0 \text { [\%] }$	Factory setting 85.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the y coordinate (flux) for the 2nd value pair of the characteristic. Sets the second flux value of the saturation characteristic as a [\%] referred to the rated motor flux (100 \%).		
Dependency:	The following applies for the flu p0362 < p0363 < p0364 < p036 Refer to: p0367		
Note:	For induction motors, p0363 When quick commissioning is selected (refer to p0300).	corresponds to the rated m with p3900 > 0, then the pa	eset if a catalog motor has not been

p0366[0...n]	Motor saturation characteristic I_mag 1 / Mot sat. I_mag 1		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Data set: MDS
	Units group: -	Unit selectio	
	$\begin{aligned} & \operatorname{Min} \\ & 5.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 800.0 \text { [\%] } \end{aligned}$	Factory setting 50.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the x coordinate (magnetizing current) for the 1st value pair of the characteristic. Sets the first magnetization current of the saturation characteristic in [\%] with reference to the rated magnetization current (r0331).		
Dependency:	The following applies for the magnetizing currents: p0366 < p0367 < p0368 < p0369		
Note:	When quick commissioning is selected (refer to p0300).	with p3900 > 0,	reset if a catalog motor has not been

p0367[0...n]	Motor saturation characteristic I_mag 2 / Mot sat. I_mag 2		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min $5.0 \text { [\%] }$	$\begin{aligned} & \operatorname{Max} \\ & 800.0 \text { [\%] } \end{aligned}$	Factory setting 75.0 [\%]
Description:	The saturation characteristics This parameter specifies the Sets the second magnetizatio tion current (r0331).	a function of the m nate (magnetizing t of the saturation	is defined using 4 points. value pair of the characteristic. with reference to the rated magnetiza-
Dependency:	The following applies for the m p0366 < p0367 < p0368 < p0369 Refer to: p0363	zing currents:	
Note:	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (refer to p0300).		
p0368[0...n]	Motor saturation characteristic I_mag 3 / Mot sat. I_mag 3		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min $5.0 \text { [\%] }$	$\begin{aligned} & \operatorname{Max} \\ & 800.0 \text { [\%] } \end{aligned}$	Factory setting 150.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the x coordinate (magnetizing current) for the 3rd value pair of the characteristic. Sets the third magnetization current of the saturation characteristic in [\%] with reference to the rated magnetization current (r0331).		
Dependency:	The following applies for the magnetizing currents: p0366 < p0367 < p0368 < p0369		
Note:	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (refer to p0300).		
p0369[0...n]	Motor saturation characteristic I_mag 4 / Mot sat. I_mag 4		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min $5.0 \text { [\%] }$	Max $800.0 \text { [\%] }$	Factory setting 210.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the x coordinate (magnetizing current) for the 4th value pair of the characteristic. Sets the fourth magnetization current of the saturation characteristic in [\%] with reference to the rated magnetization current (r0331).		
Dependency:	The following applies for the magnetizing currents: p0366 < p0367 < p0368 < p0369		
Note:	When quick commissioning is exited with $\mathrm{p} 3900>0$, then the parameter is reset if a catalog motor has not been selected (refer to p0300).		

r0370[0...n]	Motor stator resistance, cold / Mot R_stator cold		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min - [ohm]	Max - [ohm]	Factory setting - [ohm]
Description:	Displays the motor stator resistance at an ambient temperature (p0625). The value does not include the cable resistance.		
Dependency:	Refer to: p0625		
r0372[0...n]	Cable resistance / Mot R_cable		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min - [ohm]	Max - [ohm]	Factory setting - [ohm]
Description: Dependency:	Displays the total cable resistance between power unit and motor, as well as the internal converter resistance.		
r0373[0...n]	Motor rated stator resistance / Mot R_stator rated		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min - [ohm]	Max - [ohm]	Factory setting - [ohm]
Description:	Displays the rated motor stator resistance at rated temperature (total of p0625 and p0627).		
Dependency:	Refer to: p0627		
Note:	The parameter is not used for synchronous motors (p0300 = 2xx).		
r0374[0...n]	Motor rotor resistance cold / Mot R_r cold		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min - [ohm]	Max - [ohm]	Factory setting - [ohm]
Description:	Displays the motor rotor resistance at an ambient temperature p0625.		
Dependency:	Refer to: p0625		
Note:	The parameter is not used for synchronous motors (p0300 = 2xx).		
r0376[0...n]	Rated motor rotor resistance / Mot R_rotor rated		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min - [ohm]	Max - [ohm]	Factory setting - [ohm]
Description:	Displays the rated motor rotor resistance at rated temperature (total of p0625 and p0628).		
Dependency:	Refer to: p0628		
Note:	The parameter is not used for synchronous motors (p0300 = 2xx).		

r0395[0...n]	Actual stator resistance / R_stator act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min - [ohm]	Max - [ohm]	Factory setting - [ohm]
Description:	Displays the actual stator resistance (phase value).		
Dependency:	In the case of induction motors the parameter is also affected by the motor temperature model. Refer to: p0350, p0352, p0620		
Note:	In each case, only the stator resistance of the active Motor Data Set is included with the stator temperature of the thermal motor model.		

p0500	Technology application / Tec application
PM240	Access level: 2 Calculated: - Data type: Integer16
PM250, PM260	Can be changed: $\mathrm{C}(1,5), \mathrm{T}$ Scaling: - Data set: -
	Units group: - Unit selection: -
	Min Max Factory setting 0 3 0
Description:	Sets the technology application. The parameter influences the calculation of open-loop and closed-loop control parameters that is e.g. initiated using p0340 $=5$.
Value:	0: Standard drive Pumps and fans Sensorless closed-loop control down to $\mathrm{f}=0$ (passive loads) Pumps and fans, efficiency optimization
Notice:	If the technological application is set to p $0500=0 \ldots 3$ during commissioning ($p 0010=1,5,30$), the operating mode (p1300) is pre-set accordingly.
Note:	The calculation of parameters dependent on the technology application can be called up as follows: - when exiting quick commissioning using p3900 >0 - when writing p0340 $=1,3,5$
	For p0500 $=0$ and when the calculation is initiated, the following parameters are set:
	- p1574 = 10 V
	- p1750 bit $2=0$
	- p1802 $=4$ (SVM/FLB without overcontrol) (PM240: p1802 $=0$, PM260: p1802 $=2$)
	- p1803 = 106% (PM260: p1803 = 103%)
	For $\mathrm{p} 0500=1$ and when the calculation is initiated, the following parameters are set:
	- p1574 = 2 V
	- p1750 bit $2=0$
	- p1802 $=4$ (SVM/FLB without overcontrol) (PM240: p1802 = 0)
	- p1803 = 106% (PM260: p1803 = 103%)
	For p0500 $=2$ and when the calculation is initiated, the following parameters are set:
	- p1574 = 2 V (for separately-excited synchronous motors: 4 V)
	- p1750 bit $2=1$
	- p1802 $=4$ (SVM/FLB without overcontrol) (PM240: p1802 = 0)
	- p1803 = 106% (PM260: p1803 = 103%)
	For p0500 $=3$ and when the calculation is initiated, the following parameters are set:
	- p1574 = 2 V
	- p1750 bit $2=1$
	- p1802 = 4 (SVM/FLB without overcontrol) (PM240: p1802 = 0)
	- p1803 = 106% (PM260: p1803 = $103 \%)$
	Rep1750:
	The setting of p1750 is only relevant for induction motors.
	p1750 bit 2 = 1: Sensorless closed-loop control of induction motors effective up to a frequency of zero. This operating mode is possible for passive loads. These include applications where the load does not generate regenerative torque when breaking away and the motor comes to a standstill (zero speed) itself when the pulses are inhibited.
	Rep1802 / p1803:
	p1802 and p1803 are only changed, in all cases, if a sine-wave output filter ($\mathrm{p} 0230=3,4$) has not been selected.

p0581	Measuring probe, edge / MT edge		
CU240E-2	Access level: 3	Calculated: -	Data type: Integer16
CU240E-2 DP	Can be changed: U, T	Scaling: -	Data set: -
CU240E-2 DP F	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Sets the edge to evalua 0 : 0/1 edge 1: $1 / 0$ edge	ing probe signal for	measurement.
Dependency:	Refer to: p0580		
p0582	Measuring probe, pulses per revolution / MT pulses per rev		
CU240E-2	Access level: 3	Calculated: -	Data type: Unsigned16
CU240E-2 DP	Can be changed: U, T	Scaling: -	Data set: -
CU240E-2 DP F	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 12 \end{aligned}$	Factory setting 1
Description:	Sets the number of pulses per revolution (e.g. for disks with holes).		
p0583	Measuring probe, maximum measuring time / MT t_meas max		
CU240E-2	Access level: 3	Calculated: -	Data type: FloatingPoint32
CU240E-2 DP	Can be changed: U, T	Scaling: -	Data set: -
CU240E-2 DP F	Units group: -	Unit selection: -	
	Min $0.040 \text { [s] }$	$\begin{aligned} & \operatorname{Max} \\ & 10.000[s] \end{aligned}$	Factory setting 10.000 [s]
Description:	Sets the maximum measuring time for the measuring probe. If a new pulse is not received before the maximum measuring time has expired, then the speed actual value in r0586 is set to zero. This timer is re-started with the next pulse.		
Dependency:	Refer to: r0586		
p0585	Measuring probe gear factor / Probe gear factor		
CU240E-2	Access level: 3	Calculated: -	Data type: FloatingPoint32
CU240E-2 DP	Can be changed: U, T	Scaling: -	Data set: -
CU240E-2 DP F	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0.00000 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00000 \end{aligned}$	Factory setting 1.00000
Description:	Sets the BERO gear factor.		l in r0586.

r0586	CO: Measuring probe, speed actual value / MT n_act		
CU240E-2	Access level: 3	Calculated: -	Data type: FloatingPoint32
CU240E-2 DP	Can be changed: -	Scaling: p2000	Data set: -
CU240E-2 DP F CU240E-2 F	Units group: 3_1	Unit selection:	
	Min - [rpm]	Max - [rpm]	Factory setting - [rpm]
Description:	Displays the speed actual value measured using the BERO.		
Dependency:	Refer to: p0580, p0583		
Note:	For p0580 = 0 (no measuring probe), a value of zero is displayed here.		
r0587	CO: Measuring probe, measuring time measured / MT t_meas measured		
CU240E-2	Access level: 3	Calculated: -	Data type: Unsigned32
CU240E-2 DP	Can be changed: -	Scaling: -	Data set: -
CU240E-2 DP F	Units group: -	Unit selection:	
CU240E-2 F			
	Min	Max	Factory setting
Description:	Displays the time between the last two BERO pulses.		
	If a new pulse is not received before the maximum measured time in p0583 expires, then r0587 is set to the maxi mum measuring time.		
Dependency:	Refer to: p0580		
Note:	For p0580 = 0 (no measuring probe), a value of zero is displayed here.		
r0588	CO: Measuring probe, pulse counter / MT pulse counter		
CU240E-2	Access level: 3	Calculated: -	Data type: Unsigned32
CU240E-2 DP	Can be changed: -	Scaling: -	Data set: -
CU240E-2 DP F	Units group: -	Unit selection:	
CU240E-2 F			
	Min	Max	Factory setting
		-	-
Description:	Displays the number of measuring pulses that have occurred (been received) up until now.		
Dependency:	Refer to: p0580		
Note:	After reaching 4294967295 (2^32-1), the counter starts again at 0.		
r0589	Measuring probe, delay time / MT t_delay		
CU240E-2	Access level: 3	Calculated: -	Data type: Unsigned32
CU240E-2 DP	Can be changed: -	Scaling: -	Data set: -
CU240E-2 DP F	Units group: -	Unit selection:	
CU240E-2 F			
	Min	Max	Factory setting
Description:	Displays the time since the last measuring pulse was detected.		
	The delay time is specified as 32-bit value with a resolution of $1 / 48 \mu \mathrm{~s}$.		
	When a measuring pulse occurs (is received) the delay time is reset and is limited to the maximum measuring time in p0583.		
Dependency:	Refer to: p0580		
Note:	For p0580 = 0 (no measuring probe), a value of zero is displayed here.		

p0595	Selecting technological units / Select tech units		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: C (5)	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	Max_{46}	Factory setting 1
Description:	Selects the units for the parameters of the technology controller.		
Value:	1: \%		
	2: 1 referred, no dimensions		
	3: bar		
	4: ${ }^{\circ} \mathrm{C}$		
	5: Pa		
	6: $\mathrm{ltr} / \mathrm{s}$		
	7: $\quad \mathrm{m} / \mathrm{m}^{\text {c }}$		
	8: $\mathrm{ltr} / \mathrm{min}$		
	9: $\mathrm{m}^{3} / \mathrm{min}$		
	10: lt / h		
	11: $\mathrm{m}^{3} / \mathrm{h}$		
	12: kg / s		
	13: $\mathrm{kg} / \mathrm{min}$		
	14: kg / h		
	15: t/min		
	16: t/h		
	17: N		
	18: kN		
	19: Nm		
	20: psi		
	21: ${ }^{\circ} \mathrm{F}$		
	22: gallon/s		
	23: inch ${ }^{3} / \mathrm{s}$		
	24: gallon/min		
	25: inch $3 / \mathrm{min}$		
	26: gallon/h		
	27: inch ${ }^{3} / \mathrm{h}$		
	28: lb / s		
	29: $\mathrm{lb} / \mathrm{min}$		
	30: lb / h		
	31: lbf		
	32: lbf ft		
	33: K		
	34: rpm		
	35: parts/min		
	36: m/s		
	37: $\mathrm{ft} 3 / \mathrm{s}$		
	38: $\mathrm{ft} 3 / \mathrm{min}$		
	39: BTU/min		
	40: BTU/h		
	41: mbar		
	42: inch wg		
	43: ft wg		
	44: mwg		
	45: \% r.h.		
	46: g / kg		
Dependency:	Only units of parameters with unit group 9_1 can be changed over using this parameter. Refer to: p0596		

p0596	Reference quantity, technological units / Ref tech units		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0.01 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 340.28235 E 36 \end{aligned}$	Factory setting 1.00
Description:	Sets the reference quantity for the technological units. When changing over using changeover parameter 595 to absolute units, all of the parameters involved refer to the reference quantity.		
Dependency:	Refer to: p0595		
p0601[0...n]	Motor temperature sensor type / Mot_temp_sens type		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	$\underset{0}{\operatorname{Min}}$	Max_{4}	Factory setting 0
Description:	Sets the sensor type for the motor temperature monitoring.		
Value:	0 : No sensor 1: PTC alarm \& timer 2: KTY84 4: Bimetallic NC contact	timer	
Dependency:	The thermal motor model is only calculated for p0612.1 $=1$.		
	If, for a selected KTY temperature sensor ($\mathrm{p} 0601=2$), the motor temperature sensor is not connected but another encoder, then the temperature adaptation of the motor resistances must be switched out ($\mathrm{p} 0620=0$). Otherwise, in controlled-loop operation, torque errors will occur that will mean that the drive will not be able to be stopped.		
Note:	PTC thermistor (p0601 = 1): Tripping resistance $=1650$ Ohm.		
p0604[0...n]	Motor temperature alarm threshold / Mot_temp al thr		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: MDS
	Units group: 21_1	Unit selection: p0	
	$\begin{aligned} & \operatorname{Min}_{0.0} \\ & 0.0 \end{aligned}$	$\operatorname{Max}_{240.0}\left[^{\circ} \mathrm{C}\right]$	$\begin{aligned} & \text { Factory setting } \\ & 130.0\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$
Description:	Sets the alarm threshold for monitoring the motor temperature.		
Dependency:	Refer to: p0606		
Caution:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The hysteresis for canceling the alarm is 2 Kelvin.		
	When quick commissioning is exited with $\mathrm{p} 3900>0$, then the parameter is reset if a catalog motor has not been selected (refer to p0300).		

p0612[0...n]	Thermal motor model configuration / Therm Mot_mod conf						
	Access level: 3	Calculated: p0340 = 1 Scaling: -	Data type: Unsigned16				
	Can be changed: U, T		Data set:				
	Units group: - Uniter	Unit selection: -					
	$\underline{M i n}$	Max	Factory se 0010 bin				
Description:	Sets the configuration for the thermal motor model.						
Bit field:	$\begin{array}{ll}\text { Bit } & \text { Signal name } \\ 00 & \text { Activate } 12 \mathrm{t} \text { motor model }\end{array}$	1 signal	0 signal	FP			
		Yes	No				
	01 Activate motor temperature model	el Yes	No	-			
Dependency: Note:	Refer to: r0034, p0611, p0615						
	Re bit 00:						
	This bit is only used for permanent-magnet synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$). It is only possible to switch in thermal 12 t monitoring with a time constant greater than zero ($\mathrm{p} 0611>0$).						
	Re bit 01:						
	This bit is used to activate/de-activate the thermal motor model for induction motors.						
p0615[0...n]	12t motor model fault threshold / I2t mot_mod thresh						
	Access level: 3	Calculated: -	Data type: FloatingPoint32				
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: MDS				
	Units group: 21_1 U	Unit selection: p0505					
	$\begin{aligned} & \operatorname{Min} \\ & 0.0\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Max	Factory setting 180.0 [$\left.{ }^{\circ} \mathrm{C}\right]$				
		220.0 [${ }^{\text {C }}$]					
Description: Dependency:	Sets the fault threshold for monitoring using the thermal l2t motor model.						
	The parameter is only used for permanent-magnet synchronous motors (p0300 $=2 \mathrm{xx}$).						
	Refer to: r0034, p0611, p0612						
	Refer to: F07011, A07012						
Caution:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.						
p0620[0...n]	Thermal adaptation, stator and rotor resistance / Mot therm_adapt R						
	Access level: 4	Calculated: p0340 = 1	Data type: Integer16				
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$ S	Scaling: -	Data set: MDS				
	Units group: - Und	Unit selection: -					
		$\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$	Factory setting 1				
Description:	Sets the thermal adaptation of the stator/primary section resistance and rotor/secondary section resistance according to r0395 and r0396.						
Value:	$\begin{array}{ll}\text { 0: } & \text { No thermal adaptation of stator and rotor resistances } \\ \text { 1: } & \text { Resistances adapted to the temperatures of the thermal model } \\ \text { 2: } & \text { Resistances adapted to the measured stator winding temperature }\end{array}$						
Note:	For p0620 = 1, the following applies:						
	The stator resistance is adapted using the temperature in r0035 and the rotor resistance together with the model temperature in r0633.						
	For p0620 $=2$, the following applies:						
	The stator resistance is adapted using the temperature in r0035. If applicable, the rotor temperature for adapting the rotor resistance is calculated from the stator temperature (r0035) as follows: theta_R $=($ r0628 + r0625 $) /(r 0627+r 0625) *$ r0035						

p0621[0...n]	Identification stator resistance after restart / Rst_ident Restart
	Access level: 2 Calculated: - Data type: Integer16
	Can be changed: C(3), T Scaling: - Data set: MDS
	Units group: - Unit selection: -
	Min Max Factory setting 0 2 0
Description:	Selects the identification of the stator resistance after booting the Control Unit (only for vector control). The identification is used to measure the actual stator resistance and from the ratio of the result of motor data identification (p0350) to the matching ambient temperature (p0625) the actual mean temperature of the stator winding is calculated. The result is used to initialize the thermal motor model. p0621 = 1: Identification of the stator resistance only when the drive is powered up for the first time (pulse enable) after booting the Control Unit. p0621 = 2: Identification of the stator resistance every time the drive is powered up (pulse enable).
Value:	$0:$ No Rs identification 1: Rs identification after switching-on again 2: Rs identification after switching-on each time
Dependency:	- perform motor data identification (see p1910) with cold motor. - enter ambient temperature at time of motor data identification in p0625. Refer to: p0622, r0623
Notice:	The calculated stator temperature can only be compared with the measured value of a temperature sensor (KTY) to a certain extent, as the sensor is usually the warmest point of the stator winding, whereas the measured value of identification reflects the mean value of the stator winding. Furthermore this is a short-time measurement with limited accuracy that is performed during the magnetizing phase of the induction motor.
Note:	The measurement is carried out: - For induction motors - When vector control is active (see p1300) - If a temperature sensor (KTY) has not been connected - When the motor is at a standstill when switched on When a flying restart is performed on a rotating motor, the temperatures of the thermal motor model are set to a third of the overtemperatures. This occurs only once, however, when the CU is booted (e.g. after a power failure). If identification is activated, the magnetizing time is determined via 00622 and not via p0346. Quick magnetizing (p 1401.6) is de-energized internally and alarm A07416 is displayed. The speed is enabled after completion of the measurement.
p0622[0...n]	Motor excitation time for Rs_ident after powering up again / t_excit Rs_id
	Access level: 3 Calculated: $\mathrm{p} 0340=1,3$ Data type: FloatingPoint32
	Can be changed: C(3), U, T Scaling: - Data set: MDS
	Units group: Unit selection: -
	Min Max Factory setting $0.000[\mathrm{~s}]$ $20.000[\mathrm{~s}]$ $0.000[\mathrm{~s}]$
Description: Dependency: Note:	Sets the excitation time of the motor for the stator resistance identification after powering up again (restart). Refer to: p0621, r0623 For p0622 < p0346 the following applies: If identification is activated, the magnetizing time is influenced by p0622. The speed is enabled after measurement is complete, but not before the time in p0346 has elapsed (see r0056 bit 4). The time taken for measurement also depends on the settling time of the measured current. For p0622 >= p0346 the following applies: Parameter p0622 is internally limited to the magnetizing time p0346, so that p0346 represents the maximum possible magnetizing time during identification. The entire measurement period (magnetizing plus measurement settling time plus measuring time) will always be greater than p0346.

r0623	Stator resistance of Rs identification after powering up again / R_Stator Reset_Id		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min - [ohm]	Max - [ohm]	Factory setting - [ohm]
Description: Dependency:	Displays the identified stator resistance after the Rs identification after powering up again. Refer to: p0621, p0622		
p0625[0...n]	Motor ambient temperature / Mot T_ambient		
	Access level: 3	Calculated: p0340 $=1,2$	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: MDS
	Units group: 21_1	Unit selection: p0505	
	$\begin{aligned} & \operatorname{Min} \\ & -40\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 80\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting $20\left[{ }^{\circ} \mathrm{C}\right]$
Description: Note:	If the thermal I2t motor model is activated for permanent-magnet synchronous motors (refer to p0611), p0625 is included in the model calculation if a temperature sensor is not being used (see p0601).		erature model. emperature. us motors (refer to p0611), p0625 is (see p0601).
p0626[0...n]	Motor overtemperature, stator core / Mot T_over core		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: MDS
	Units group: 21_2	Unit selection: p0505	
	Min_{20}	$\begin{aligned} & \operatorname{Max}_{200} \\ & \hline K] \end{aligned}$	Factory setting 50 [K]
Description: Dependency:	Defines the rated overtemper For 1LA7 motors (refer to p030 Refer to: p0625	the stator core referred to	temperature.
Note:	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (refer to p0300).		
p0627[0...n]	Motor overtemperature, stator winding / Mot T_over stator		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: MDS
	Units group: 21_2	Unit selection: p0505	
	Min_{20}	$\begin{aligned} & \operatorname{Max}_{200} \\ & \end{aligned}$	Factory setting 80 [K]
Description:	Defines the rated overtemperature of the stator winding referred to the ambient temperature.		
Dependency:	For 1LA7 motors (refer to p0300), the parameter is pre-set as a function of p0307 and p0311. Refer to: p0625		
Note:	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (refer to p0300).		

p0628[0...n]	Motor overtemperature rotor winding / Mot T_over rotor		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: MDS
	Units group: 21_2	Unit selection: p0505	
	Min_{20}	$\begin{aligned} & \operatorname{Max}_{200} \\ & \hline K] \end{aligned}$	Factory setting 100 [K]
Description:	Defines the rated overtemperature of the squirrel cage rotor referred to ambient temperature.		
Dependency:	For 1LA7 motors (refer to p0300), the parameter is pre-set as a function of p0307 and p0311. Refer to: p0625		
Note:	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (refer to p0300).		
r0630[0...n]	Motor temperature model ambient temperature / MotTMod T_amb.		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Data set: MDS
	Units group: 21_1	Unit selection: p0505	
	$\operatorname{Min}_{-\left[{ }^{\circ} \mathrm{C}\right]}$	$\begin{gathered} \operatorname{Max} \\ -\left[{ }^{\circ} \mathrm{C}\right] \end{gathered}$	Factory setting - $\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the ambient temperature of the motor temperature model.		
r0631[0...n]	Motor temperature model, stator core temperature / MotTMod T_core		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Data set: MDS
	Units group: 21_1	Unit selection: p0505	
	$\begin{aligned} & \operatorname{Min} \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	$\begin{gathered} \operatorname{Max} \\ -\left[{ }^{\circ} \mathrm{C}\right] \end{gathered}$	Factory setting - $\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the stator core temperature of the motor temperature model.		
r0632[0...n]	Motor temperature model, stator winding temperature / MotTMod T_copper		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Data set: MDS
	Units group: 21_1	Unit selection: p0505	
	$\operatorname{Min}_{-\left[{ }^{\circ} \mathrm{C}\right]}$	$\begin{aligned} & \operatorname{Max} \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting $-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the stator winding temperature of the motor temperature model.		
r0633[0...n]	Motor temperature model, rotor temperature / MotTMod T_rotor		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Data set: MDS
	Units group: 21_1	Unit selection: p0505	
	$\operatorname{Min}_{-\left[{ }^{\circ} \mathrm{C}\right]}$	$\begin{aligned} & \operatorname{Max} \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting - $\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the rotor temperature of the motor temperature model.		

p0634[0...n]	Q flux flux constant unsaturated / PSIQ KPSI UNSAT		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min 0.000 [Vsrms]	Max 100.000 [Vsrms]	Factory setting 0.000 [Vsrms]
Description:	The non-linear and cross-coupled quadrature axis flux functions are defined using 4 coefficients. The parameter weights the unsaturated component of the quadrature axis flux function.		

p0635[0...n]	Q flux quadrature axis current constant unsaturated / PSIQ KIQ UNSAT		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: MDS

p0636[0...n]	Q flux direct axis current constant unsaturated / PSIQ KID UNSAT		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	$0.00[$ Arms $]$	10000.00 [Arms]	0.00 [Arms]
Description:	The non-linear and cross-coupled quadrature axis flux functions are defined using 4 coefficients.		
	This parameter describes the interdependency of the unsaturated component of the direct axis current.		
Dependency:	Refer to: p0634		

p0637[0...n]	Q flux flux gradient saturated / PSIQ Grad SAT		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: - Unit selection: -	Data set: MDS

p0640[0...n]	Current limit / Current limit		
	Access level: 2	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,3), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 0.00 [Arms]	Max 10000.00 [Arms]	Factory setting 0.00 [Arms]
Description:	Sets the current limit.		
Dependency:	Refer to: r0209, p0323		
Note:	The parameter is part of the quick commissioning ($\mathrm{p} 0010=1$); this means that it is appropriately pre-assigned when changing p0305. The current limit p0640 is limited to r0209.		
	The resulting current limit is displayed in r0067 and if required, r0067 is reduced by the thermal model of the power unit.		
	The torque and power limits (p1520, p1521, p1530, p1531) matching the current limit are automatically calculated when exiting the quick commissioning using p3900>0 or using the automatic parameterization with p0340 $=3,5$. p0640 is limited to $4.0 \times p 0305$.		
	p0640 is pre-assigned for the automatic self commissioning routine (e.g. to $1.5 \times \mathrm{p} 0305$, with p0305 = r0207[1]).		
	p0640 must be entered when commissioning the system. This is the reason that p0640 is not calculated by the automatic parameterization when exiting the quick commissioning (p3900>0).		
p0641[0...n]	CI: Current limit, variable / Curr lim var		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Sets the signal source for the variable current limit.		
	The value is referred to p0640.		
p0650[0...n]	Actual motor operating hours / Mot t_oper act		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	0 [h]	4294967295 [h]	0 [h]
Description:	Displays the operating hours for the corresponding motor.		
	The motor operating time counter continues to run when the pulses are enabled. When the pulse enable is withdrawn, the counter is held and the value saved.		
Dependency:	Refer to: p0651		
	Refer to: A01590		
Note:	The operating hours counter in p0650 can only be reset to 0 . In this case, p0651 is automatically set to 0 .		
	For p0651 $=0$, the operating hours counter is disabled.		
	The operating hours counter only runs with drive data set 0 and 1 (DDS).		

r0721	CU digital inputs, terminal actual value / CU DI actual value			
CU240B-2	Access level: 2	Calculated: -	Data type:	
CU240B-2 DP	Can be changed: -	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min	Max	Factory setting	
	-		-	
Description:	Displays the actual value at the digital inputs.			
	This means that the actual input signal can be checked at terminal DI \times or DI/DO \times prior to switching from the simulation mode ($p 0795 \cdot x=1$) to terminal mode ($p 0795 \cdot x=0$).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DI 0 (T. 5)	High	Low	-
	01 DI 1 (T. 6)	High	Low	-
	02 DI 2 (T. 7)	High	Low	-
	03 DI 3 (T. 8)	High	Low	-
	11 DI 11 (T. 3, 4) AI 0	High	Low	-
Note:	DI: Digital Input			
	T: Terminal			
r0721	CU digital inputs, terminal actual value / CU DI actual value			
CU240E-2	Access level: 2	Calculated: -	Data type: Unsigned32	
CU240E-2 DP	Can be changed: -	Scaling: -	Data set: -	
CU240E-2 DP F	Units group: -	Unit selection: -		
CU240E-2 F				
	Min	Max	Factory setting	
	-		,	
Description:	Displays the actual value at the digital inputs.			
	This means that the actual input signal can be checked at terminal DI \times or DI/DO \times prior to switching from the simulation mode ($p 0795 \cdot x=1$) to terminal mode ($p 0795 \cdot x=0$).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DI 0 (T. 5)	High	Low	-
	01 DI 1 (T. 6)	High	Low	-
	02 DI 2 (T. 7)	High	Low	-
	03 DI 3 (T. 8)	High	Low	-
	04 DI 4 (T. 16)	High	Low	-
	05 DI 5 (T. 17)	High	Low	-
	11 DI 11 (T. 3, 4) AI 0	High	Low	-
	12 DI 12 (T. 10, 11) AI 1	High	Low	-
Note:	DI: Digital Input			
	T: Terminal			

r0722.0... 12 CO/BO: CU digital inputs, status / CU DI status

CU240E-2
CU240E-2 DP
CU240E-2 DP F
CU240E-2 F

Access level: 2
Can be changed: -
Units group: -

Calculated: -
Scaling: -
Unit selection: -

Max
Displays the status of the digital inputs.
Description: Bit field:

Bit	Signal name	1 signal
00	DI $0($ T. 5)	High
01	DI $1($ T. 6)	High
02	DI $2($ T. 7$)$	High
03	DI $3($ T. 8)	High
04	DI $4($ T. 16)	High
05	DI $5($ T. 17)	High
11	DI $11($ T. 3, 4) AI 0	High
12	DI 12 (T. 10, 11) AI 1	High
Refer to: r0723		
To the terminal designation:		
The first designation is valid for CU320, the second for CU310.		
AI: Analog Input		
DI: Digital Input		
T: Terminal		

Data type: Unsigned32
Data set: -

Factory setting

r0723.0... 11	CO/BO: CU digital inputs, status inverted / CU DI status inv			
CU240B-2	Access level: 3	Calculated: -	Data type:	
CU240B-2 DP	Can be changed: -	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min	Max	Factory se	
	-	-		
Description:	Displays the inverted status of the digital inputs.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DI 0 (T. 5)	High	Low	-
	01 DI 1 (T. 6)	High	Low	-
	02 DI 2 (T. 7)	High	Low	-
	03 DI 3 (T. 8)	High	Low	-
	11 DI 11 (T. 3, 4) AI 0	High	Low	-
Dependency:	Refer to: r0722			
Notice:	To the terminal designation:			
	The first designation is valid for CU320, the second for CU310.			
Note:	DI: Digital Input			
	T: Terminal			
r0723.0... 12	CO/BO: CU digital inputs, status inverted / CU DI status inv			
CU240E-2	Access level: 3	Calculated: -	Data type:	
CU240E-2 DP	Can be changed: -	Scaling: -	Data set: -	
CU240E-2 DP F	Units group: -	Unit selection: -		
CU240E-2 F				
	Min	Max	Factory se	
	-	-		
Description:	Displays the inverted status of the digital inputs.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DI 0 (T. 5)	High	Low	-
	01 DI 1 (T. 6)	High	Low	-
	02 DI 2 (T. 7)	High	Low	-
	03 DI 3 (T. 8)	High	Low	-
	04 DI 4 (T. 16)	High	Low	-
	05 DI 5 (T. 17)	High	Low	-
	11 DI 11 (T. 3, 4) AI 0	High	Low	-
	$12 \mathrm{DI} 12(\mathrm{~T} .10,11) \mathrm{Al} 1$	High	Low	-
Dependency:	Refer to: r0722			
Notice:	To the terminal designation:			
	The first designation is valid for CU320, the second for CU310.			
Note:	DI: Digital Input			
	T: Terminal			
p0724	CU digital inputs debounce time / CU DI t_debounce			
	Access level: 3	Calculated: -	Data type:	
	Can be changed: U, T	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min 0.000 [ms]	$\begin{aligned} & \operatorname{Max} \\ & 20.000[\mathrm{~ms}] \end{aligned}$	Factory se 4.000 [ms]	
Description:	Sets the debounce time for digital inputs.			
Note:	The digital inputs are read in cyclically every 2 ms (DI 11, DI 12 every 4 ms).			
	To debounce the signals, the set debounce time is converted into integer multiple debounce clock cycles $\operatorname{Tp}(\mathrm{Tp}$ p0724 / 2 ms).			
	DI: Digital Input			

r0751.0... 9	BO: CU analog inputs status word / CU Al status word			
	Access level: 3	Calculated: -	Data type: Unsigned16	
	Can be changed: - S	Scaling: -	Data set: -	
	Units group: - U	Unit selection: -		
	Min M	Max	Factory setting	
	- -	-		
Description:	Displays the status of analog inputs.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Analog input AIO wire breakage	Yes	No	-
	01 Analog input Al1 wire breakage	Yes	No	-
	08 Analog input AIO no wire breakage	ge Yes	No	-
	09 Analog input Al1 no wire breakage Yes		No	-
Note:	AI: Analog Input			
r0752[0...1]	CO: CU analog inputs input voltage/current actual / CU AI U/I_inp act			
	Access level: 2	Calculated: -	Data type: FloatingPoint32	
	Can be changed: - S	Scaling: -	Data set: -	
	Units group: - U	Unit selection: -		
	Min	Max	Factory setting	
Description:	Displays the actual input voltage in V when set as voltage input.			
Index:	$\begin{aligned} & {[0]=\text { AIO }(\mathrm{T} .3 / 4)} \\ & {[1]=\text { AII }(\mathrm{T} .10 / 11)} \end{aligned}$			
Dependency:	The type of analog input Alx (voltage or current input) is set using p0756.			
	Refer to: p0756			
Note:	Al: Analog Input			
	T: Terminal			
p0753[0...1]	CU analog inputs smoothing time constant / CU AI T_smooth			
	Access level: 3 C	Calculated: -	Data type:	
	Can be changed: U, T S	Scaling: -	Data set: -	
	Units group: - U	Unit selection: -		
	Min M	Max	Factory set	
	0.0 [ms] 10	1000.0 [ms]	0.0 [ms]	
Description:	Sets the smoothing time constant of the 1st-order low pass filter for the analog inputs.			
Index:	$[0]=\mathrm{AlO}(\mathrm{~T} .3 / 4)$			
Note:	AI: Analog Input			
	T: Terminal			

r0755[0...1]	CO: CU analog inputs actual value in percent / CU Al value in \%		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the currently referred input value of the analog inputs.		
Index:	$[0]=\text { AIO (T. 3/4) }$		
Note:	AI: Analog Input		
	T: Terminal		
p0756[0...1]	CU analog inputs type / CU Al type		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 8 \end{aligned}$	Factory setting [0] 4
			[1] 4
Description:	Sets the type of analog inputs.		
	p0756[0...1] $=0,1,4$ corresponds to a voltage input (r0752, p0757, p0759 are displayed in V).		
	p0756[0...1] = 2, 3 corresponds to a current input (r0752, p0757, p0759 are displayed in mA).		
	In addition, the associated DIP switch must be set.		
	For the voltage input, DIP switch AIO/1 must be set to "U".		
	For the current input, DIP switch AIO/1 or AI2 must be set to "I".		
Value:	0 : Unipolar voltage input ($0 \mathrm{~V} \ldots+10 \mathrm{~V}$)		
	1: Unipolar voltage	ed (+2 V ... +10 V)	
	2: Unipolar current	. $+20 \mathrm{~mA})$	
	3: Unipolar current	ed (+4 mA to +20 mA)	
	4: Bipolar voltage in	+10 V)	
	8: No sensor conne		
Index:	$\begin{aligned} & {[0]=\text { AIO }(\mathrm{T} .3 / 4)} \\ & {[1]=\text { AII }(\mathrm{T} .10 / 11)} \end{aligned}$		
Warning:	The maximum voltage difference between analog input terminals $\mathrm{Al}+$, $\mathrm{Al}-$, and the ground must not exceed 35 V .		
	If the system is operated when the load resistor is switched on (DIP switch set to "I"), the voltage between differential inputs AI+ and AI- must not exceed 10 V or the injected 80 mA current otherwise the input will be damaged.		
Note:	When changing p0756, the parameters of the scaling characteristic (p0757, p0758, p0759, p0760) are overwritten with the following default values:		
	For p0756 $=0,1,4$, p0757 is set to $0.0 \mathrm{~V}, \mathrm{p} 0758=0.0 \%$, p0759 $=10.0 \mathrm{~V}$ and p0760 $=100.0 \%$.		
	For p0756 $=2$, p0757 is set to $0.0 \mathrm{~mA}, \mathrm{p} 0758=0.0 \%$, p0759 $=20.0 \mathrm{~mA}$ and p0760 $=100.0 \%$.		
	For p0756 $=3, \mathrm{p} 0757$ is set to $4.0 \mathrm{~mA}, \mathrm{p} 0758=0.0 \%$ p0759 $=20.0 \mathrm{~mA}$ and p0760 $=100.0 \%$.		

p0757[0...1]	CU analog inputs characteristic value $\mathrm{x} 1 / \mathrm{CU}$ AI char x 1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\operatorname{Min}_{-50.000}$	$\begin{aligned} & \text { Max } \\ & 160.000 \end{aligned}$	Factory setting 0.000
Description:	Sets the scaling characteristic for the analog inputs.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
	This parameter specifies the x coordinate (V, mA) of the 1st value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=\operatorname{AIO}(\mathrm{T} .3 / 4)} \\ & {[1]=\operatorname{Al1}(\mathrm{T} .10 / 11)} \end{aligned}$		
Note:	The parameters for the characteristic do not have a limiting effect.		
p0758[0...1]	CU analog inputs characteristic value y1 / CU AI char y1		
	Access level: 2	Calculated:	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-1000.00 [\%]	1000.00 [\%]	0.00 [\%]
Description:	Sets the scaling characteristic for the analog inputs.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
	This parameter specifies the y coordinate (percentage) of the 1st value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=\text { AIO }(\mathrm{T} .3 / 4)} \\ & {[1]=\text { AII }(\mathrm{T} .10 / 11)} \end{aligned}$		
Note:	The parameters for the characteristic do not have a limiting effect.		
p0759[0...1]	CU analog inputs characteristic value $\times 2 / \mathrm{CU}$ Al char $\times 2$		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-50.000	160.000	
Description:	Sets the scaling characteristic for the analog inputs.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
	This parameter specifies the x coordinate (V, mA) of the 2 nd value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=\operatorname{AIO}(\mathrm{T} .3 / 4)} \\ & {[1]=\operatorname{Al1}(\mathrm{T} .10 / 11)} \end{aligned}$		
Note:	The parameters for the characteristic do not have a limiting effect.		
p0760[0...1]	CU analog inputs characteristic value y2 I CU AI char y2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\operatorname{Min}_{-1000.00[\%]}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00 \text { [\%] } \end{aligned}$	$\begin{aligned} & \text { Factory setting } \\ & 100.00 \text { [\%] } \end{aligned}$
Description:	Sets the scaling characteristic for the analog inputs.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
Index:	$\begin{aligned} & {[0]=\text { AIO (T. 3/4) }} \\ & {[1]=\text { Al1 (T. 10/11) }} \end{aligned}$		
Note:	The parameters for the characteristic do not have a limiting effect.		

p0773[0...1]	CU analog outputs smoothing time constant /CU AO T_smooth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	$0.0[\mathrm{~ms}]$	$1000.0[\mathrm{~ms}]$	$0.0[\mathrm{~ms}]$
Description:	Sets the smoothing time constant of the 1st-order low pass filter for the analog outputs.		
Index:	$[0]=$ AOO (T 12/12)		
	$[1]=$ AO1 (T 26/27)		
Note:	AO: Analog Output		
	T: Terminal		

r0774[0...1]	CU analog outputs output voltage/current actual / CU AO U/I_outp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Displays the actual output voltage or output current at the analog outputs.		
Index:	$[0]=A O O(T 12 / 13)$		
Dependency:	Refer to: p0776		
Note:	AO: Analog Output		

p0775[0...1]	CU analog outputs activate absolute value generation / CU AO absVal act		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	0	1	0

Description: Activates the absolute value generation for the analog outputs.
Value: $\quad 0: \quad$ No absolute value generation
1: Absolute value generation switched in
Index: $\quad[0]=A O O(T 12 / 13)$
[1] = AO1 (T 26/27)
Note: \quad AO: Analog Output
T : Terminal

r0785.0... 1	BO: CU analog outputs status word / CU AO ZSW			
	Access level: 3	Calculated: -	Data type: Unsigned16	
	Can be changed: -	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min	Max	Factory setting	
	-	-		
Description:	Displays the status of analog outputs.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 AO 0 negative	Yes	No	-
	01 AO 1 negative	Yes	No	-
Note:	AO: Analog Output			
p0795	CU digital inputs simulation mode / CU DI simulation			
CU240B-2	Access level: 3	Calculated: -	Data type: Unsigned32	
CU240B-2 DP	Can be changed: U, T Scaling:		Data set: -	
	Units group: - Unit selection			
	Min	Max	Factory setting	
	-		0000000000000000 bin	
Description:	Sets the simulation mode for digital inputs.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	$00 \text { DI } 0 \text { (T. 5) }$	Simulation	Terminal eval.	-
	$01 \text { DI } 1 \text { (T. 6) }$	Simulation	Terminal eval.	-
	$02 \text { DI } 2 \text { (T. 7) }$	Simulation	Terminal eval.	-
	03 DI 3 (T. 8)	Simulation	Terminal eval.	-
	11 DI 11 (T. 3, 4) AI 0	Simulation	Terminal eval.	-
Dependency:	The setpoint for the input signals is specified using p0796.			
Note:	This parameter is not saved when data is backed up (p0971).			
	DI: Digital Input			
	T: Terminal			
p0795	CU digital inputs simulation mode / CU DI simulation			
CU240E-2	Access level: 3	Calculated: -	Data type: Unsigned32	
CU240E-2 DP	Can be changed: U, T	Scaling: -	Data set: -	
CU240E-2 DP F	Units group: -	Unit selection: -		
CU240E-2 F				
	Min	Max	Factory setting 0000000000000000 bin	
Description:	Sets the simulation mode for digital inputs.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DI 0 (T. 5)	Simulation	Terminal eval.	-
	01 DI 1 (T. 6)	Simulation	Terminal eval.	-
	02 DI 2 (T. 7)	Simulation	Terminal eval.	-
	03 DI 3 (T. 8)	Simulation	Terminal eval.	-
	04 DI 4 (T. 16)	Simulation	Terminal eval.	-
	05 DI 5 (T. 17)	Simulation	Terminal eval.	-
	11 DI 11 (T. 3, 4) AI 0	Simulation	Terminal eval.	-
	12 DI 12 (T. 10, 11) AI 1	Simulation	Terminal eval.	-
Dependency:	The setpoint for the input signals is specified using p0796. Refer to: p0796			
Note:	This parameter is not saved DI: Digital Input T: Terminal	ta is backed up (p0971).		

p0796	CU digital inputs simulation mode setpoint / CU DI simul setp			
CU240B-2	Access level: 3	Calculated: -	Data type: Unsigned32	
CU240B-2 DP	Can be changed: U, T	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min	Max	Factory setting	
Description:	Sets the setpoint for the input signals in the digital input simulation mode.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DIO (T. 5)	High	Low	-
	01 DI 1 (T. 6)	High	Low	-
	02 DI 2 (T. 7)	High	Low	-
	03 DI 3 (T. 8)	High	Low	-
	11 DI 11 (T. 3, 4) Al 0	High	Low	-
Dependency:	The simulation of a digital input is selected using p0795.			
	Refer to: p0795			
Notice:	To the terminal designation:			
	The first designation is vaid	2, the second for CU310.		
Note:	This parameter is not saved when data is backed up (p0971).			
	Al: Analog Input			
	DI: Digital Input			
	T: Terminal			

p0796	CU digital inputs simulation mode setpoint / CU DI simul setp		
CU240E-2	Access level: 3	Calculated: -	Data type: Unsigned32
CU240E-2 DP	Can be changed: U, T	Scaling: -	Data set: -
CU240E-2 DP F	Units group: -	Unit selection: -	

	Min		Max		Factory se 00000000	
Description:	Sets the setpoint for the input signals in the digital input simulation mode.					
Bit field:		Signal name		1 signal	0 signal	FP
		DI 0 (T. 5)		High	Low	-
		DI 1 (T. 6)		High	Low	-
		DI 2 (T. 7)		High	Low	-
		DI 3 (T. 8)		High	Low	-
		DI 4 (T. 16)		High	Low	-
		DI 5 (T. 17)		High	Low	-
		DI 11 (T. 3, 4) AI 0		High	Low	-
	12	DI 12 (T. 10, 11) Al 1		High	Low	-
Dependency:	The simulation of a digital input is selected using p0795.					
	Refer to: p0795					
Notice:	To the terminal designation:					
	The first designation is valid for CU320, the second for CU310.					
Note:	This parameter is not saved when data is backed up (p0971).					
	AI: Analog Input					
	DI: Digital Input					
	T: Terminal					

p0797[0...1]	CU analog inputs simulation mode ICU AI sim_mode		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Sets the simulation mode for the analog inputs.		
Value:	0 : \quad No simulation mode for analog input x 1: Simulation mode for analog input x		
Index:	$\begin{aligned} & {[0]=\operatorname{AIO}(\mathrm{T} .3 / 4)} \\ & {[1]=\operatorname{Al1}(\mathrm{T} .10 / 11)} \end{aligned}$		
Dependency:	The setpoint for the input voltage is specified via p0798.		
Note:	This parameter is not saved when data is backed up (p0971). AI: Analog Input		
p0798[0...1]	CU analog inputs simulation mode setpoint / CU AI sim setp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & -50.000 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2000.000 \end{aligned}$	Factory setting 0.000
Description: Index:	$\begin{aligned} & {[0]=\operatorname{AIO}(\mathrm{T} .3 / 4)} \\ & {[1]=\operatorname{Al1}(\mathrm{T} .10 / 11)} \end{aligned}$		
Dependency:	The simulation of an an If Al x is parameterized If Al x is parameterized Refer to: p0756, p0797	selected using p079 input (p0756), the se nput (p0756), the se	in V. in mA.
Note:	This parameter is not saved when data is backed up (p0971).		
p0802	Data transfer: memory card as source/target / mem_card src/targ		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100 \end{aligned}$	Factory setting 0
Description:	Sets the number for dat Transfer from memory - Sets the source of par Transfer from non-volatil - Sets the target of para	parameter backup memory (p0804 = p (e.g. p0802 = 48 mory to memory car (e.g. p0802 $=23$-->	ard. is the source). is the target).
Dependency: Notice:	If the data between the volatile and non-volatile device memories differ, then it may be necessary to save the data on the memory card in a non-volatile fashion prior to the transfer (e.g. p0971 = 1).		

p0804	Data transfer start / Data transf start
CU240B-2	Access level: 3 Calculated: - Data type: Integer16
CU240E-2	Can be changed: T Scaling: - Data set: -
CU240E-2 F	Units group: - Unit selection: -
	Min Max Factory setting 0 1100 0
Description:	Sets the transfer direction and start of data transfer between the memory card and non-volatile device memory. Example 1: The parameter backup is to be transferred from the device memory to the memory card with setting 0 . The parameter backup is to be stored on the memory card with setting 22. p0802 $=22$ (parameter backup stored on memory card as target with setting 22) p0803 $=0$ (parameter backup stored in device memory as source with setting 0) p0804 = 2 (start data transfer from device memory to memory card) --> PS000xxx.ACX is transferred from device memory to memory card and stored as PS022xxx.ACX. Example 2: The parameter backup is to be transferred from the memory card to the device memory with setting 22 . The parameter backup is to be stored in the device memory as setting 0. p0802 $=22$ (parameter backup stored on memory card as source with setting 22) p0803 $=0$ (parameter backup stored in device memory as target with setting 0) p0804 = 1 (start data transfer from memory card to device memory) --> PS022xxx.ACX is transferred from memory card to device memory and stored as PS000xxx.ACX. Example 3 (not supported for PROFIBUS devices): The communication configuration is to be transferred from the device memory to the memory card. p0802 $=$ (not relevant) p0803 = (not relevant) p0804 = 12 (start transferring the device master data (GSD) to the memory card) --> The files that are relevant for the communication configuration are transferred from the device memory to the memory card and stored in the /SIEMENS/SINAMICS/DATA/CFG directory.
Value:	0 : Inactive 1: \quad Memory card to device memory 2: Device memory to memory card 1001: File on memory card cannot be opened 1002: File in device memory cannot be opened 1003: Memory card not found 1100: File cannot be transferred
Dependency:	Refer to: p0802, p0803
Notice:	The memory card must not be removed while data is being transferred. For p0014 = 1, the following applies: After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.
Note:	If a parameter backup with setting 0 is detected on the memory card when the Control Unit is switched on (PS000xxx.ACX), this is transferred automatically to the device memory. When the memory card is inserted, a parameter backup with setting 0 (PS000xxx.ACX) is automatically written to the memory card when the parameters are saved in a non-volatile memory (e.g. by means of "Copy RAM to ROM"). Once the data has been successfully transferred, this parameter is automatically reset to 0 . If an error occurs, the parameter is set to a value > 1000. Possible fault causes: $\mathrm{p} 0804=1001:$ The parameter backup set in p0802 as the source on the memory card does not exist or there is not sufficient memory space available on the memory card. $\mathrm{p} 0804=1002:$ The parameter backup set in p0803 as the source in the device memory does not exist or there is not sufficient memory space available in the device memory. p0804 = 1003: No memory card has been inserted.

p0804	Data transfer start / Data transf start
CU240B-2 DP	Access level: 3 Calculated: - Data type: Integer16
CU240E-2 D	Can be changed: T Scaling: - Data set: -
CU240E-2 DP F	Units group: - Unit selection: -
	Min Max Factory setting 0 1100 0
Description:	Sets the transfer direction and start of data transfer between the memory card and non-volatile device memory. Example 1: The parameter backup is to be transferred from the device memory to the memory card with setting 0 . The parameter backup is to be stored on the memory card with setting 22. p0802 $=22$ (parameter backup stored on memory card as target with setting 22) p0803 $=0$ (parameter backup stored in device memory as source with setting 0) p0804 = 2 (start data transfer from device memory to memory card) --> PS000xxx.ACX is transferred from device memory to memory card and stored as PS022xxx.ACX. Example 2: The parameter backup is to be transferred from the memory card to the device memory with setting 22. The parameter backup is to be stored in the device memory as setting 0 . p0802 $=22$ (parameter backup stored on memory card as source with setting 22) p0803 $=0$ (parameter backup stored in device memory as target with setting 0) p0804 = 1 (start data transfer from memory card to device memory) --> PS022xxx.ACX is transferred from memory card to device memory and stored as PS000xxx.ACX. Example 3 (not supported for PROFIBUS devices): The communication configuration is to be transferred from the device memory to the memory card. p0802 = (not relevant) p0803 = (not relevant) p0804 = 12 (start transferring the device master data (GSD) to the memory card) --> The files that are relevant for the communication configuration are transferred from the device memory to the memory card and stored in the /SIEMENS/SINAMICS/DATA/CFG directory.
Value:	0 : Inactive Memory card to device memory Device memory to memory card Device memory (communication configuration) to memory card 1001: File on memory card cannot be opened 1002: File in device memory cannot be opened 1003: Memory card not found 1100: File cannot be transferred
Dependency:	Refer to: p0802, p0803
Notice:	The memory card must not be removed while data is being transferred. For p0014 = 1, the following applies: After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.
Note:	If a parameter backup with setting 0 is detected on the memory card when the Control Unit is switched on (PS000xxx.ACX), this is transferred automatically to the device memory. When the memory card is inserted, a parameter backup with setting 0 (PS000xxx.ACX) is automatically written to the memory card when the parameters are saved in a non-volatile memory (e.g. by means of "Copy RAM to ROM"). Once the data has been successfully transferred, this parameter is automatically reset to 0 . If an error occurs, the parameter is set to a value > 1000. Possible fault causes: p0804 = 1001: The parameter backup set in p0802 as the source on the memory card does not exist or there is not sufficient memory space available on the memory card. p0804 = 1002: The parameter backup set in p0803 as the source in the device memory does not exist or there is not sufficient memory space available in the device memory. p0804 = 1003: No memory card has been inserted.

p0811	BI: Command data set selection CDS bit 1 / CDS select., bit 1		
	Access level: 2	Calculated: -	Data
	Can be changed: T	Scaling: -	Data
	Units group: -	Unit selection	
	Min	Max	Fact 0
Description:	Sets the signal source to select the Command Data Set bit 1 (CDS bit 1).		
Dependency:	Refer to: r0050, p0810, r0836		
Note:	The Command Data Set selected using the binector inputs is displayed in r0836.		
	The currently effective command data set is displayed in r0050.		
	A Command Data Set can be copied using p0809.		

p0819[0...2]	Copy Drive Data Set DDS / Copy DDS		
	Access level: 2	Calculated: -	Data type: Unsigned8
	Can be changed: $\mathrm{C}(15)$	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 3 \end{aligned}$	Factory setting 0
Description: Index:	Copies one Drive Data Set (DDS) into another. [0] = Source Drive Data Set [1] = Target Drive Data Set [2] = Start copying procedure		
Dependency:	Refer to: r3996		
Notice: Note:	When the drive data sets a Procedure: 1. In Index 0, enter which d 2. In Index 1, enter the driv 3. Start copying: Set index p0819[2] is automatically s	short-term commun set is to be copied. data that is to be c 1. n copying is compl	s may occur.
p0820[0...n]	BI: Drive Data Set selection DDS bit 0 / DDS select., bit 0		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: C (15), T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal source to select the Drive Data Set, bit 0 (DDS, bit 0).		
Dependency:	Refer to: r0051, p0826, r0837		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0821[0...n]	BI: Drive Data Set selection DDS bit 1 / DDS select., bit 1		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: C (15), T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal source to select the Drive Data Set, bit 1 (DDS, bit 1).		
Dependency:	Refer to: r0051, r0837		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

r0837.0... 1	CO/BO: Drive Data Set DDS selected / DDS selected			
	Access level: 3	Calculated: -	Data type:	
	Can be changed: -	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min	Max	Factory se	
Description:	Displays the drive data set (DDS) selected via the binector input.			
Bit field:	Bit Signal name 00 DDS select. bit 0 01 DDS select. bit 1	1 signal	0 signal	FP
		ON	OFF	-
		ON	OFF	-
Dependency: Note:	Refer to: r0051, p0820, p0821			
	Drive data sets are selected via binector input p0820 and following.			
	The currently effective drive data set is displayed in r0051.			
	If there is only one data set, then a value of 0 is displayed in this parameter and not the selection via binector inputs.			
p0840[0...n]	BI: ON / OFF (OFF1) / ON / OFF (OFF1)			
CU240B-2	Access level: 3	Calculated: -	Data type:	
CU240E-2	Can be changed: T	Scaling: -	Data set: CDS, p01	
CU240E-2 F	Units group: - Unit selection: -			
	$\xrightarrow{\text { Min }}$	Max	Factory setting [0] 722.0	
			[1] 0	
			[2] 0	
			[3] 0	
Description:	Sets the signal source for the command "ON/OFF (OFF1)".			
	For the PROFIdrive profile, this command corresponds to control word 1 bit 0 (STW1.0).			
Dependency:	Refer to: p1055, p1056			
Caution:	When "master control from PC" is activated, this binector input is ineffective.			
Notice:	For binector input p0840 $=0$ signal, the motor can be moved, jogging using binector input p1055 or p1056.			
	The command "ON/OFF (OFF1)" can be issued using binector input p0840 or p1055/p1056.			
	For binector input p0840 $=0$ signal, the switch-on inhibit is acknowledged.			
	Only the signal source that originally powered up can also power down again.			
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.			
Note:	For drives with closed-loop speed control (p1300 = 20), the following applies:			
	- BI: p0840 $=0$ signal: OFF1 (braking with the ramp-function generator, then pulse suppression and switch-on inhibit)			
	For drives with closed-loop torque control (p1300 = 22), the following applies:			
	- BI: p0840 = 0 signal: immediate pulse cancellation			
	For drives with closed-loop torque control (activated using p1501), the following applies:			
	- BI: p0840 = 0 signal: No dedicated braking response, but pulse suppression when standstill is detected (p122 p1227)			
	For drives with closed-loop speed/torque control, the following applies:			
	- BI: p0840 = 0/1 signal: ON (pulses can be enabled)			

p0840[0...n]	BI: ON / OFF (OFF1) / ON / OFF (OFF1)		
CU240B-2 DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU240E-2 DP	Can be changed: T	Scaling: -	Data set: CDS, p0170
CU240E-2 DP F	Units group: -	Unit selection: -	
	Min	Max	Factory setting [0] 2090.0
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal source for the command "ON/OFF (OFF1)".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 0 (STW1.0).		
Dependency:	Refer to: p1055, p1056		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	For binector input p0840 = 0 signal, the motor can be moved, jogging using binector input p1055 or p1056.		
	The command "ON/OFF (OFF1)" can be issued using binector input p0840 or p1055/p1056.		
	For binector input p0840 = 0 signal, the switch-on inhibit is acknowledged.		
	Only the signal source that originally powered up can also power down again.		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For drives with closed-loop speed control (p1300 = 20), the following applies:		
	- BI: p0840 $=0$ signal: OFF1 (braking with the ramp-function generator, then pulse suppression and switch-on inhibit)		
	For drives with closed-loop torque control (p1300 = 22), the following applies:		
	- BI: p0840 = 0 signal: immediate pulse cancellation		
	For drives with closed-loop torque control (activated using p1501), the following applies:		
	- BI: p0840 = 0 signal: No dedicated braking response, but pulse suppression when standstill is detected (p1226 p1227)		
	For drives with closed-loop speed/torque control, the following applies:		

p0844[0...n]	BI: No coast-down / coast-down (OFF2) signal source 1 / OFF2 S_src 1
CU240B-2	Access level: 3 Calculated: - Data type: U32 / Binary
CU240E-2	Can be changed: T Scaling: - Data set: CDS, p0170
CU240E-2 F	Units group: - Unit selection: -
	Min Max Factory setting 1
Description:	Sets the first signal source for the command "No coast down/coast down (OFF2)". The following signals are AND'ed: - BI: p0844 "No coast-down / coast-down (OFF2) signal source 1" - BI: p0845 "No coast-down / coast-down (OFF2) signal source 2" For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 1 (STW1.1). BI: p0844 $=0$ signal or BI: p0845 $=0$ signal - OFF2 (immediate pulse suppression and switch on inhibit) BI: p0844 = 1 signal and BI: p0845 = 1 signal - No OFF2 (enable is possible)
	When "master control from PC" is activated, this binector input is ineffective.
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

p0848[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_src 1
CU240B-2	Access level: 3 Calculated: - Data type: U32 / Binary
CU240E-2	Can be changed: T Scaling: - Data set: CDS, p0170
CU240E-2 F	Units group: - Unit selection: -
	Min Max Factory setting 1
Description:	Sets the first signal source for the command "No quick stop/quick stop (OFF3)". The following signals are AND'ed: - BI: p0848 "No quick stop / quick stop (OFF3) signal source 1" - BI: p0849 "No quick stop / quick stop (OFF3) signal source 2" For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 2 (STW1.2). BI: p0848 = 0 signal or BI: p0849 $=0$ signal - OFF3 (braking along the OFF3 ramp (p1135), then pulse suppression and switch on inhibit) BI: p0848 = 1 signal and BI: p0849 = 1 signal - No OFF3 (enable is possible)
Caution:	When "master control from PC" is activated, this binector input is ineffective.
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
p0848[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_src 1
CU240B-2 DP	Access level: 3 Calculated: - Data type: U32 / Binary
CU240E-2 DP	Can be changed: T Scaling: - Data set: CDS, p0170
CU240E-2 DP F	Units group: - Unit selection: -
	Min Max Factory setting - $[0] 2090.2$ $[1] 1$ $[2] 2090.2$ $[3] 2090.2$
Description:	Sets the first signal source for the command "No quick stop/quick stop (OFF3)". The following signals are AND'ed: - BI: p0848 "No quick stop / quick stop (OFF3) signal source 1" - BI: p0849 "No quick stop / quick stop (OFF3) signal source 2" For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 2 (STW1.2). BI: p0848 = 0 signal or BI : p0849 $=0$ signal - OFF3 (braking along the OFF3 ramp (p1135), then pulse suppression and switch on inhibit) BI: p0848 = 1 signal and BI: p0849 = 1 signal - No OFF3 (enable is possible)
Caution:	When "master control from PC" is activated, this binector input is ineffective.
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

p0849[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_src 2		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection	
	Min	Max	Factory setting 1
Description:	Sets the second sign The following signals - BI: p0848 "No quick - BI: p0849 "No quick For the PROFIdrive p BI: p0848 = 0 signal - OFF3 (braking alon BI: p0848 = 1 signal - No OFF3 (enable is	command "No (OFF3) signal (OFF3) signal of the AND logic signal (p1135), then 1 signal	OFF3)". s to control word 1 bit 2 switch on inhibit)
Caution:	When "master contro	ivated, this bine	
p0852[0...n]	BI: Enable operation/inhibit operation / Operation enable		
CU240B-2	Access level: 3	Calculated: -	Data type: U32 / Binary
CU240E-2	Can be changed: T	Scaling: -	Data set: CDS, p0170
CU240E-2 F	Units group: -	Unit selection	
	Min	Max	Factory setting 1
Description:	Sets the signal sourc For the PROFIdrive p BI: p0852 $=0$ signal Inhibit operation (sup BI: p0852 = 1 signal Enable operation (pu	nd "enable ope mand correspon led).	3 (STW1.3).
	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	The parameter may b	result of p0922	be changed.

r0898.0... 14	COIBO: Control word sequence control / STW seq_ctrl				
	Access level: 2		Calculated: -	Data type: Unsigned16	
	Can be changed: - S		Scaling: -	Data set: -	
	Units group: - Un		Unit selection: -		
	Min		Max	Factory setting	
	-				
Description:	Displays the control word of the sequence control.				
Bit field:		Signal name	1 signal	0 signal	FP
		ON/OFF1	Yes	No	-
		OC / OFF2	Yes	No	-
		OC / OFF3	Yes	No	-
		Operation enable	Yes	No	-
		Ramp-function generator enable	Yes	No	-
		Continue ramp-function generator	r Yes	No	-
		Speed setpoint enable	Yes	No	-
		Command open brake	Yes	No	-
		Jog 1	Yes	No	-
		Jog 2	Yes	No	-
		Master ctrl by PLC	Yes	No	-
		Speed controller enable	Yes	No	-
		Command close brake	Yes	No	-
Note:	OC: Operating condition				
	Re bit 10:				
	If p0700 $=2$ is set, bit 10 always shows "1".				
r0899.0... 13	CO/BO: Status word sequence control / ZSW seq_ctrl				
	Access level: 2		Calculated: -	Data type: Unsigned16	
	Can be changed: - S		Scaling: -	Data set: -	
	Units group: - U		Unit selection: -		
	Min		Max	Factory setting	
	-				
Description:	Displays the status word of the sequence control.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Rdy for switch on	Yes	No	-
		Ready	Yes	No	-
	02	Operation enabled	Yes	No	-
	03	Jog active	Yes	No	-
	04	No coasting active	OFF2 inactive	OFF2 active	-
	05	No Quick Stop active	OFF3 inactive	OFF3 active	-
	06	Switching on inhibited active	Yes	No	-
	07	Drive ready	Yes	No	-
	08	Controller enable	Yes	No	-
	09	Control request	Yes	No	-
	11	Pulses enabled	Yes	No	-
	12	Open holding brake	Yes	No	-
	13	Command close holding brake	Yes	No	-
Note:	Re bits 00, 01, 02, 04, 05, 06, 09:				
	For PROFIdrive, these signals are used for status word 1.				

r0946[0...65534]	Fault code list / Fault code list		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	-	
Description:	Lists the fault codes stored in the drive unit.		
	The indices can only be accessed with a valid fault code.		
Dependency:	The parameter assigned to the fault code is entered in r0951 under the same index.		

r0947[0...63]	Fault number / Fault number		
	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	-	-	-
	This parameter is identical to r0945.		

r0948[0...63]	Fault time received in milliseconds / t_fault recv ms		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection	
	Min - [ms]	Max - [ms]	Factory setting - [ms]
Description:	Displays the system runtime in milliseconds when the fault occurred.		
Dependency:	Refer to: r0945, r0947, r0949, r2109, r2130, r2133, r2136		
Notice:	The time comprises r2130 (days) and r0948 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		
	When the parameter is read via PROFIdrive, the TimeDifference data type applies.		

p0970	Reset drive parameters / Drive par reset
	Access level: 1 Calculated: - Data type: Unsigned16
	Can be changed: $\mathrm{C}(1,30)$ Scaling: - Data set: -
	Units group: - Unit selection: -
	Min Max Factory setting 0 300 0
Description:	The parameter is used to initiate the reset of the drive parameters. Parameters p0100, p0205 are not reset. The following motor parameters are defined in accordance with the power unit: p0300 ... p0311. When downloading settings $10,11,12$, the buffer memory mode is automatically deactivated ($p 0014=0$).
Value:	0 : Inactive 1: Start a parameter reset 5: Starts a safety parameter reset 10: Starts to download setting 10 11: Starts to download setting 11 12: Starts to download setting 12 100: Start a BICO interconnection reset 300: Only Siemens internal
Dependency:	Refer to: F01659
Caution:	When the buffer memory is active (see p0014), the actual parameters are backed up from RAM to ROM when a parameter set is loaded ($p 0970=10,11,12$).
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$. Peculiarities of communication via PROFIBUS DP: - Communication with Class 1 masters (e.g. S7 controllers) is interrupted. - Communication with Class 2 masters (e.g. STARTER) is retained.
Note:	A factory setting run can only be started if p0010 was first set to 30 (parameter reset). At the end of the calculations, p0970 is automatically set to 0 . Parameter reset has been completed if p0970 and p0010 have been set to 0 . For p0970 = 5 the following applies: The password for Safety Integrated must be set. When Safety Integrated is enabled, this can result in error messages, which then require an acceptance test to be performed. Then save the parameters and carry out a POWER ON. For p0970 = 1 the following applies: If a Safety Integrated function is parameterized (p9601), then the safety parameters are not reset. In this case, an error message (F01659) is output with fault value 2. The following generally applies: One index of parameters p2100, p2101, p2118, p2119, p2126, p2127 is not reset, if a parameterized message is precisely active in this index.

r0980[0...299]	List of existing parameters 1 / List avail par 1		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection:	
	$\underline{M i n}$	Max	Factory setting
Description:	Displays the parameters that exist for this drive.		
Dependency:	Refer to: r0981, r0989		
Note:	The existing parameters are displayed in indices 0 to 298 . If an index contains the value 0 , then the list ends here. In a long list, index 299 contains the parameter number at which position the list continues.		
	This list consists solely of the following parameters:		
	r0980[0...299], r0981[0...299] ... r0989[0...299]		
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0981[0...299]	List of existing parameters 2 I List avail par 2		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection:	
	Min	Max	Factory setting
Description:	Displays the parameters that exist for this drive.		
Dependency:	Refer to: r0980, r0989		
Note:	The existing parameters are displayed in indices 0 to 298 . If an index contains the value 0 , then the list ends here. In a long list, index 299 contains the parameter number at which position the list continues.		
	This list consists solely of the following parameters:		
	r0980[0...299], r0981[0...299] ... r0989[0...299]		
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0989[0...299]	List of existing parameters 10 / List avail par 10		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selectio	
	Min	Max	Factory setting
Description:	Displays the parameters that exist for this drive.		
Dependency:			
Note:	The existing parameters are displayed in indices 0 to 298 . If an index contains the value 0 , then the list ends here. This list consists solely of the following parameters:		
	The parameters in th read from a higher-le	played in the e (e.g. PROFIB	ioning software. However, they can be

p1000[0...n]	Speed setpoint	set sel	
CU240B-2	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection	
	Min	Max	Factory setting
	0	200	2
Description:	Sets the source for the speed setpoint.		
	For single-digit values, the following applies:		
	The value specifies the main setpoint.		
	For double-digit values, the following applies:		
	The left-hand digit specifies the supplementary setpoint, the right-hand digit the main setpoint.		
	Example:		
	Value $=26$		
	--> The analog setpoint (2) supplies the supplementary setpoint.		
	--> The fieldbus (6) supplies the main setpoint.		
Value:	0 : No main setpoint		
	1: Motorized po		
	2: Analog setpo		
	3: Fixed speed		
	6: Fieldbus		
	10: Motor potentiom	n setpoint	
	11: Motor potentio	potentiometer	
	12: Motor potentio	setpoint	
	13: Motor potentio	peed setpoint	
	16: Motor potentio		
	20: Analog setpoi	point	
	21: Analog setpoi	tiometer	
	22: Analog setpo	oint	
	23: Analog setpoi	setpoint	
	26: Analog setpoi		
	30: Fixed speed	in setpoint	
	31: Fixed speed	potentiometer	
	32: Fixed speed	setpoint	
	33: Fixed speed	peed setpoint	
	36: Fixed speed		
	60: Fieldbus + no		
	61: \quad Fieldbus + mo		
	62: Fieldbus + an		
	63: Fieldbus + fix		
	66: Fieldbus+fieldbus200: Analog output con		
Dependency:	When changing this parameter, the following settings are influenced:		
	Refer to: p1070, p1071, p1075, p1076		
	$\mathrm{p} 2051[1]=\text { r0063 }$		
Caution:	When executing a sp	corresponding	are made and become a

p1000[0...n]	Speed setpoint	set sel	
CU240B-2 DP	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200 \end{aligned}$	Factory setting 6
Description:	Sets the source for the speed setpoint.		
	For single-digit values, the following applies:		
	The value specifies the main setpoint.		
	For double-digit values, the following applies:		
	The left-hand digit specifies the supplementary setpoint, the right-hand digit the main setpoint.		
	Example:		
	Value $=26$		
	--> The analog setpoint (2) supplies the supplementary setpoint.		
	--> The fieldbus (6) supplies the main setpoint.		
Value:	0 : \quad No main setpoint		
	1: Motorized potentiomete		
	2: Analog setpoint		
	3: Fixed speed setpoint		
	6: Fieldbus		
	10: Motor potentiometer + no main setpoint		
	11: Motor potentiometer + motor potentiometer		
	12: Motor potentiometer + analog setpoint		
	13: Motor potentiometer + fixed speed setpoint		
	16: Motor potentiometer + fieldbus		
	20: Analog setpoint + no main setpoint		
	21: Analog setpoint + motor potentiometer		
	22: Analog setpoint + analog setpoint		
	23: Analog setpoint + fixed speed setpoint		
	26: Analog setpoint + fieldbus		
	30: Fixed speed setpoint + no main setpoint		
	31: Fixed speed setpoint + motor potentiometer		
	32: Fixed speed setpoint + analog setpoint		
	33: Fixed speed setpoint + fixed speed setpoint		
	36: Fixed speed setpoint + fieldbus		
	60: Fieldbus + no main setpoint		
	61: Fieldbus + motor potentiometer		
	62: Fieldbus + analog setpoint		
	63: Fieldbus + fixed speed setpoint		
	66: Fieldbus+fieldbus		
	200: Analog output connection		
Dependency:	When changing this parameter, the following settings are influenced:		
	Refer to: p1070, p1071, p1075, p1076		
Caution:	$\mathrm{p} 2051[1]=\mathrm{r0063}$		
Caution:	When executing a sp	corresponding	are made and become a

p1000[0...n]	Speed setpoint selection / n_set sel		
CU240E-2	Access level: 1	Calculated: -	Data type: Integer16
CU240E-2 F	Can be changed: T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 200 \end{aligned}$	Factory setting 2
Description:	Sets the source for the speed setpoint.		
	For single-digit values, the following applies:		
	The value specifies the main setpoint.		
	For double-digit values, the following applies:		
	The left-hand digit specifies the supplementary setpoint, the right-hand digit the main setpoint.		
	Example:		
	Value $=26$		
	--> The analog setpoint (2) supplies the supplementary setpoint.		
	--> The fieldbus (6) supplies the main setpoint.		
Value:	0 : \quad No main setpoint		
	1: Motorized pot		
	2: Analog setpo		
	3: Fixed speed		
	6: Fieldbus		
	7: Analog setpoi		
	10: Motor potentio	setpoint	
	11: Motor potenti	potentiometer	
	12: Motor potentio	setpoint	
	13: Motor potentio	peed setpoint	
	16: Motor potentio		
	17: Motor potentio	setpoint 2	
	20: Analog setpoi	point	
	21: Analog setpoi	tiometer	
	22: Analog setpoi	oint	
	23: Analog setpoi	setpoint	
	26: Analog setpoi		
	27: Analog setpoi	oint 2	
	30: Fixed speed	in setpoint	
	31: Fixed speed	potentiometer	
	32: Fixed speed	setpoint	
	33: Fixed speed	peed setpoint	
	36: Fixed speed		
	37: Fixed speed	setpoint 2	
	60: Fieldbus + no		
	61: Fieldbus + mot		
	62: Fieldbus + an		
	63: Fieldbus + fix		
	66: Fieldbus+field		
	67: Fieldbus + an		
	70: Analog setpo	etpoint	
	71: Analog setpo	entiometer	
	72: Analog setpo	tpoint	
	73: Analog setpo	d setpoint	
	76: Analog setpo		
	77: Analog setpo	tpoint 2	
	200: Analog output connection		
Dependency:	When changing this parameter, the following settings are influenced:		
	Refer to: p1070, p1071, p1075, p1076		
Caution:	If p1000 is selected p2051[1] = r0063	int of the fieldb	interconnection is set a

Caution:
When executing a specific macro, the corresponding programmed settings are made and become active.

Caution:
When executing a specific macro, the corresponding programmed settings are made and become active.

p1001[0...n]	CO: Fixed speed setpoint 1 / n_set_fixed 1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	Min -210000.000 [rpm]	Max 210000.000 [rpm]	Factory setting 0.000 [rpm]
Description:	Sets a value for the fixed speed / velocity setpoint 1.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1002[0...n]	CO: Fixed speed setpoint 2 / n_set_fixed 2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	$\operatorname{Min}_{-210000.000[r p m}$	$\begin{aligned} & \operatorname{Max} \\ & 210000.000 \text { [rpm] } \end{aligned}$	Factory setting 0.000 [rpm]
Description:	Sets a value for the fixed speed / velocity setpoint 2.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1003[0...n]	CO: Fixed speed setpoint 3 / n_set_fixed 3		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	Min -210000.000 [rpm]	Max 210000.000 [rpm]	Factory setting 0.000 [rpm]
Description:	Sets a value for the fixed speed / velocity setpoint 3.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1004[0...n]	CO: Fixed speed setpoint 4 / n_set_fixed 4		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	$\underset{-210000.000[\mathrm{rpm}]}{\operatorname{Min}^{2}}$	$\begin{aligned} & \operatorname{Max} \\ & 210000.000[r p m] \end{aligned}$	Factory setting 0.000 [rpm]
Description:	Sets a value for the fixed speed / velocity setpoint 4.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1005[0...n]	CO: Fixed speed setpoint 5 / n_set_fixed 5		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	$\operatorname{Min}_{-210000.000[\mathrm{rpm}]}$	Max 210000.000 [rpm]	Factory setting 0.000 [rpm]
Description: Dependency: Notice:	Sets a value for the fixe Refer to: p1020, p1021, A BICO interconnection	city setpoint 5 . r1024, r1197 that belongs to a drive	ys acts on the effective data set.

p1006[0...n]	CO: Fixed speed setpoint 6 / n_set_fixed 6		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	Min -210000.000 [rpm]	$\begin{aligned} & \operatorname{Max} \\ & 210000.000[\mathrm{rpm}] \end{aligned}$	Factory setting 0.000 [rpm]
Description:	Sets a value for the fixed speed / velocity setpoint 6.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1007[0...n]	CO: Fixed speed setpoint 7 I n_set_fixed 7		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	Min $-210000.000[\mathrm{rpm}]$	$\begin{aligned} & \operatorname{Max} \\ & 210000.000[\mathrm{rpm}] \end{aligned}$	Factory setting 0.000 [rpm]
Description:	Sets a value for the fixed speed / velocity setpoint 7.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1008[0...n]	CO: Fixed speed setpoint 8 / n_set_fixed 8		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	Min $-210000.000[\mathrm{rpm}]$	$\begin{aligned} & \operatorname{Max} \\ & 210000.000[\mathrm{rpm}] \end{aligned}$	Factory setting 0.000 [rpm]
Description:	Sets a value for the fixed speed/velocity setpoint 8.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1009[0...n]	CO: Fixed speed setpoint 9 / n_set_fixed 9		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	Min $-210000.000[\mathrm{rpm}]$	$\begin{aligned} & \operatorname{Max} \\ & 210000.000[\mathrm{rpm}] \end{aligned}$	Factory setting 0.000 [rpm]
Description:	Sets a value for the fixed speed/velocity setpoint 9.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1010[0...n]	CO: Fixed speed setpoint 10 / n_set_fixed 10		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	Min -210000.000 [rpm]	$\begin{aligned} & \operatorname{Max} \\ & 210000.000[\mathrm{rpm}] \end{aligned}$	Factory setting 0.000 [rpm]
Description:	Sets a value for the fixed speed / velocity setpoint 10.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1011[0...n]	CO: Fixed speed setpoint 11 / n_set_fixed 11		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	Min -210000.000 [rpm]	Max 210000.000 [rpm]	Factory setting 0.000 [rpm]
Description:	Sets a value for the fixed speed/ velocity setpoint 11.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1012[0...n]	CO: Fixed speed setpoint 12 / n_set_fixed 12		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	$\operatorname{Min}_{-210000.000[r p m}$	$\begin{aligned} & \operatorname{Max} \\ & 210000.000 \text { [rpm] } \end{aligned}$	Factory setting 0.000 [rpm]
Description:	Sets a value for the fixed speed / velocity setpoint 12.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1013[0...n]	CO: Fixed speed setpoint 13 / n_set_fixed 13		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	Min -210000.000 [rpm]	Max 210000.000 [rpm]	Factory setting 0.000 [rpm]
Description:	Sets a value for the fixed speed / velocity setpoint 13.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1014[0...n]	CO: Fixed speed setpoint 14 / n_set_fixed 14		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	$\underset{-210000.000[\mathrm{rpm}]}{\operatorname{Min}^{2}}$	$\begin{aligned} & \operatorname{Max} \\ & 210000.000[r p m] \end{aligned}$	Factory setting 0.000 [rpm]
Description:	Sets a value for the fixed speed / velocity setpoint 14.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1015[0...n]	CO: Fixed speed setpoint 15 / n_set_fixed 15		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	$\operatorname{Min}_{-210000.000}[\mathrm{rpm}]$	$\begin{aligned} & \operatorname{Max} \\ & 210000.000[r p m] \end{aligned}$	Factory setting 0.000 [rpm]
Description: Dependency: Notice:	Sets a value for the fixe Refer to: p1020, p1021, A BICO interconnection	city setpoint 15. r1024, r1197 that belongs to a drive	ys acts on the effective data set.

p1035[0...n]	BI: Motorized potentiometer setpoint raise / Mop raise		
CU240B-2 DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU240E-2 DP	Can be changed: T	Scaling: -	Data set: CDS, p0170
CU240E-2 DP F	Units group: -	Unit selection: -	
	Min	Max	Factory setting [0] 2090.13
			[1] 0
			[2] 0
			[3] 0
Description:	The setpoint change (CO: r1050) depends on the set ramp-up time (p1047) and the duration of the signal that is present (BI: p1035).		
Dependency:	Refer to: p1036		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1036[0...n]	BI: Motorized potentiometer lower setpoint / Mop lower		
CU240B-2	Access level: 3	Calculated: -	Data type: U32 / Binary
CU240E-2	Can be changed: T	Scaling: -	Data set: CDS, p0170
CU240E-2 F	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	The setpoint change (CO: r1050) depends on the set ramp-down time (p1048) and the duration of the signal that is present (BI: p1036).		
Dependency:	Refer to: p1035		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1036[0...n]	BI: Motorized potentiometer lower setpoint / Mop lower		
CU240B-2 DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU240E-2 DP	Can be changed: T	Scaling: -	Data set: CDS, p0170
CU240E-2 DP F	Units group: -	Unit selection: -	
	Min	Max	Factory setting [0] 2090.14
			[1] 0
			[2] 0
			[3] 0
Description:	The setpoint change (CO: r1050) depends on the set ramp-down time (p1048) and the duration of the signal that is present (BI: p1036).		
Dependency:	Refer to: p1035		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1037[0...n]	Motorized potentiometer maximum speed / MotP n_max		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	Min -210000.000 [rpm]	Max 210000.000 [rpm]	Factory setting 0.000 [rpm]
Description: Note:	Sets the maximum spee This parameter is autom The setpoint output from	the motorized potentiometer. ssigned in the commissioning d potentiometer is limited to	(see function diagram 3020).

p1038[0...n]	Motorized potentiometer minimum speed / MotP n_min		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	$\underset{-210000.000[\mathrm{rpm}]}{\operatorname{Min}^{2}}$	Max 210000.000 [rpm]	Factory setting 0.000 [rpm]
Description: Note:	Sets the minimum speed/velocity for the motorized potentiometer. This parameter is automatically pre-assigned in the commissioning phase.		
p1039[0...n]	BI: Motorized potentiometer inversion / MotP inv		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	$\underline{M i n}$	Max	Factory setting 0
Description:	Sets the signal source to invert the minimum speed/velocity or the maximum speed/velocity for the motorized potentiometer.		
Dependency:	Refer to: p1037, p1038		
Note:	The inversion is only active during "motorized potentiometer raise" or "motorized potentiometer lower".		
p1040[0...n]	Motorized potentiometer starting value / Mop start value		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	Min -210000.000 [rpm]	Max 210000.000 [rpm]	Factory setting 0.000 [rpm]
Description:	Sets the starting value for the motorized potentiometer. This starting value becomes effective after the drive has been powered up.		
Dependency:	Only effective if p1030.0 $=0$. Refer to: p1030		
p1041[0...n]	BI: Motorized potentiometer manual/automatic / Mop manual/auto		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection: -	
		Max	Factory setting 0
Description:	Sets the signal source to change over from manual to automatic when using a motorized potentiometer. In the manual mode, the setpoint is changed using two signals - raise and lower. In the automatic mode, the setpoint must be interconnected via a connector input.		
Dependency:	Refer to: p1030, p1035, p1036, p1042		
Note:	The effectiveness of the internal ramp-function generator can be set in automatic mode.		

p1052[0...n]	CI: Speed limit RFG negative direction of rotation / n_limit RFG neg		
CU240E-2 DP F	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
CU240E-2 F	Can be changed: T	Scaling: p2000	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	-	$9733[1]$
Description:	Sets the signal source for the speed limit of the negative direction on the ramp-function generator input.		

p1055[0...n]	BI: Jog bit O / Jog bit O		
CU240B-2	Access level: 3	Calculated: -	Data type: U32 / Binary
CU240E-2	Can be changed: T	Unit selection: -	Data set: CDS, p0170
CU240E-2 F	Units group: -	Max	
	Min	-	Factory setting
	-		
Description:	Sets the signal source for jog 1.		
Dependency: Refer to: p0840, p1058 Notice: The drive is enabled for jogging using BI: p1055 or BI: p1056.			
	The command "ON/OFF1" can be issued using BI: p0840 or using BI: p1055/p1056.		
	Only the signal source that was used to power up can also be used to power down again.		

p1055[0...n]	BI: Jog bit O / Jog bit 0	
CU240B-2 DP	Access level: 3	Calculated: -
CU240E-2 DP	Can be changed: T	Scaling: -
CU240E-2 DP F	Units group: -	Unit selection: -
	Min	Max
	-	-
Fata set: CDS, p0170		
		$[0] 0$
		$[1] 722.0$
		$[3] 0$

Description:	Sets the signal source for jog 1.
Dependency:	Refer to: p0840, p1058
Notice:	The drive is enabled for jogging using BI: p1055 or BI: p1056.
	The command "ON/OFF1" can be issued using BI: p0840 or using BI: p1055/p1056.
	Only the signal source that was used to power up can also be used to power down again.

p1056[0...n]	BI: Jog bit 1 / Jog bit 1		
CU240B-2	Access level: 3	Calculated: -	Data type: U32 / Binary
CU240E-2	Can be changed: T	Scaling: -	Data set: CDS, p0170
CU240E-2 F	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal source for jog 2.		
Dependency:	Refer to: p0840, p1059		
Notice:	The drive is enabled for jogging using BI : p1055 or BI : p 1056 .		
	The command "ON/OFF1" can be issued using BI: p0840 or using BI: p1055/p1056.		
	Only the signal source that was used to power up can also be used to power down again.		

p1075[0...n]	CI: Suppl setpoint / Suppl setpoint		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal source for the supplementary setpoint. Refer to: p1076, r1077, r1078		
Dependency:			
p1076[0...n]	CI: Supplementary setpoint scaling / Suppl setp scal		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	$\underline{M i n}$	Max	Factory setting 1
Description:	Sets the signal source for scaling the supplementary setpoint.		
r1077	CO: Supplementary setpoint effective / Suppl setpoint eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection: p0505	
	$\underset{-[r p m}{\operatorname{Min}}$	Max - [rpm]	Factory setting - [rpm]
Description:	Displays the effective supplementary setpoint. The value shown is the additional setpoint after scaling.		
r1078	CO: Total setpoint effective / Total setpoint eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection: p0505	
	Min - [rpm]	Max - [rpm]	Factory setting - [rpm]
Description:	Displays the total effective setpoint. The value indicates the sum of the effective main setpoint and supplementary setpoint.		
p1080[0...n]	Minimum speed / n_min		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1), \mathrm{T}$	Scaling: -	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	Min 0.000 [rpm]	Max 19500.000 [rpm]	Factory setting 0.000 [rpm]
Description:	Sets the lowest possible motor speed. This value is not undershot in operation.		
Note:	The parameter value applies for both motor directions.		

p1082[0...n]	Maximum speed / n_max		
	Access level: 1	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1), \mathrm{T}$	Scaling: -	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	Min $0.000 \text { [rpm] }$	$\begin{aligned} & \operatorname{Max} \\ & 210000.000[\mathrm{rpm}] \end{aligned}$	Factory setting 1500.000 [rpm]
Description:	Sets the highest possible speed.		
Dependency:	Refer to: p0230, r0313, p0322		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		
Note:	The parameter applies for both motor directions. The parameter has a limiting effect and is the reference quantity for all ramp-up and ramp-down times (e.g. down ramps, ramp-function generator, motor potentiometer).		
	Since the parameter is part of quick commissioning (p0010 = 1), it is defined appropriately when p0310, p0311, p0322, p0324, p0530, p0531, and p0532 are changed.		
	The following limits are always effective for p1082:		
	p1082 < = min(p0324, p0532) if p0324>0 and p0532>0		
	p1082 < p 0322 if p0324 $=0$ or p0532 $=0$ and p0322>0		
	p1082 <= $60 \times$ maximum ($15 \times \mathrm{r0310}, 650 \mathrm{~Hz}$) / r0313		
	p1082 <= $60 \times$ maximum power unit pulse frequency / ($k \times r 0313$), with $k=12$ (vector control), $k=6.5$ (U/f control)		
	If a sine-wave filter $(\mathrm{p} 0230=3)$ is parameterized as output filter, then the maximum speed is limited corresponding to the maximum permissible filter output frequency (refer to the filter data sheet). For reactors and dU/dt filters, it is limited to 120 Hz / r0313.		
	During automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$), the parameter value is assigned the maximum motor speed (p0322). If p0322 $=0$, the rated motor speed (p0311) is used as default (pre-assignment) value. For induction motors, the synchronous no-load speed is used as the default value ($\mathrm{p} 0310 \times 60 / \mathrm{r0313}$).		
	For synchronous motors, the following additionally applies:		
	During automatic calculation (p0340, p3900), p1082 is limited to speeds where the EMF does not exceed the DC link voltage.		
	p1082 is also available in the quick commissioning (p0010 = 1); this means that when exiting via p3900 > 0, the value is not changed.		
	For vector control, the maximum speed is restricted to $60.0 /(8.333 \times 500 \mu \mathrm{~s} \times \mathrm{r} 0313)$. This can be identified by a reduction in r1084. p1082 is not changed in this process due to the fact that the operating mode p1300 can be changed over.		
	When using sine-wave filters ($\mathrm{p} 0230=3,4$), the maximum speed r 1084 is limited to 70% of the resonant frequency of the filter capacitance and the motor leakage inductance.		
p1083[0...n]	CO: Speed limit in positive direction of rotation / n_limit pos		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{rpm}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 210000.000[\mathrm{rpm}] \end{aligned}$	Factory setting 210000.000 [rpm]
Description:	Sets the maximum speed for the positive direction.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
r1084	CO: Speed limit positive effective / n_limit pos eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection: p0505	
	Min - [rpm]	Max - [rpm]	Factory setting - [rpm]
Description:	Displays the effective positive speed limit.		
Dependency:	Refer to: p1082, p1083, p1085		

p1085[0...n]	CI: Speed limit in positive direction of rotation In_limit pos		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	-	$1083[0]$
Description:	Sets the signal source for the speed limit of the positive direction.		

p1086[0...n]	CO: Speed limit in negative direction of rotation / n_limit neg		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Data set: DDS, p0180
	Units group: 3_1	Unit selection:	
	$\begin{aligned} & \text { Min } \\ & -210000.000[\mathrm{rpm}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 0.000 \text { [rpm] } \end{aligned}$	Factory setting -210000.000 [rpm]
Description:	Sets the speed limit for the negative direction.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
r1087	CO: Speed limit negative effective I n_limit neg eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection:	
	Min - [rpm]	$\begin{aligned} & \text { Max } \\ & -[r p m] \end{aligned}$	Factory setting - [rpm]
Description: Dependency:	Displays the effective negative speed limit.		
Dependency.	Refer to: p1082, p1086, p1088		

p1088[0...n]	CI: Speed limit in negative direction of rotation / n_limit neg		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	$\underline{M i n}$	Max	Factory setting 1086[0]
Description:	Sets the signal source for the speed/velocity limit of the negative direction.		
p1091[0...n]	Skip speed 1 / n_skip 1		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0	
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{rpm}] \end{aligned}$	$\underset{210000.000[\mathrm{rrm}]}{\operatorname{Max}}$	Factory setting 0.000 [rpm]
Description:	Sets skip speed 1.		
Dependency:	Refer to: p1092, p1093, p1094, p1101		
Notice:	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel. The skip (suppression) speeds can be used to prevent the effects of mechanical resonance.		
Note:			

p1108[0...n]	BI: Total setpoint selection / Total setp sel		
	Access level: 4	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal source to select the total setpoint.		
Dependency:	The selection of the total speed setpoint is automatically interconnected to the status word of the technology controller (r2349.4) if the technology controller is selected (p2200>0) and operated in the mode p2251 = 0. Refer to: p1109		
Caution:	If the technology controller is to supply the total setpoint using p1109, then it is not permissible to withdraw the interconnection to its status word (r2349.4).		
p1109[0...n]	CI: Total setpoint / Total setp		
	Access level: 4	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal source for the total setpoint.		
Dependency:	The signal source of the total setpoint is automatically interconnected to the output of the technology controller $(r 2294)$ if the technology controller is selected $(p 2200>0)$ and operated in the mode p2251 $=0$. Refer to: p1108		
Caution:	If the technology controller is to supply the total setpoint using p1109, then it is not permissible to disable the interconnection to its output (r2294).		
p1110[0...n]	BI: Inhibit negative direction / Inhib neg dir		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Dependency:	Sets the signal source to disable the negative direction. Refer to: p1111		
p1111[0...n]	BI: Inhibit positive direction / Inhib pos dir		
	Access level: 4	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Dependency:	Sets the signal source to disable the positive direction. Refer to: p1110		

$\mathbf{r 1 1 1 2}$	CO: Speed setpoint after minimum limiting / n_set \mathbf{n}. min_lim		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection: p	
	$\begin{aligned} & \text { Min } \\ & -[r p m] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & -[\mathrm{rpm}] \end{aligned}$	Factory setting - [rpm]
Description:	Displays the speed setpoint after the minimum limiting.		
Dependency:	Refer to: p1091, p1092, p1093, p1094, p1101		
p1113[0...n]	BI: Setpoint inversion / Setp inv		
CU240B-2	Access level: 3	Calculated: -	Data type: U32 / Binary
CU240E-2	Can be changed: T	Scaling: -	Data set: CDS, p0170
CU240E-2 F	Units group: -	Unit selection: -	
	Min	Max	Factory setting [0] 722.1
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal source to invert the setpoint.		
Dependency:	Refer to: r1198		
	If the technology controller is being used as the speed main setpoint (p2251 = 0), do not invert the setpoint using p1113 when the technology controller is enabled because this can cause the speed to change suddenly and lead to positive couplings in the control loop.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1113[0...n]	BI: Setpoint inversion / Setp inv		
CU240B-2 DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU240E-2 DP	Can be changed: T	Scaling: -	Data set: CDS, p0170
CU240E-2 DP F	Units group: -	Unit selection:	
	Min	Max	Factory setting [0] 2090.11
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal source to invert the setpoint.		
Dependency:	Refer to: r1198		
	If the technology controller is being used as the speed main setpoint (p2251 = 0), do not invert the setpoint using p1113 when the technology controller is enabled because this can cause the speed to change suddenly and lead to positive couplings in the control loop.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
r1114	CO: Setpoint after the direction limiting / Setp after limit		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection: p	
	Min - [rpm]	$\begin{aligned} & \text { Max } \\ & -[r p m] \end{aligned}$	Factory setting - [rpm]
Description:	Displays the speed/velocity setpoint after the changeover and limiting the direction.		

p1115	Ramp-function generator selection / RFG selection		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 1
Description:	Sets the ramp-function generator type.		
Value:	0: Basic ramp-function generator		
	1: Extended ramp-function generator		
Note:	Another ramp-function generator type can only be selected when the motor is at a standstill.		
r1119	CO: Ramp-function generator setpoint at the input / RFG setp at inp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection: p0	
	Min - [rpm]	Max - [rpm]	Factory setting - [rpm]
Description:	Displays the setpoint at the input of the ramp-function generator.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The setpoint is influenced by other functions, e.g. skip (suppressed) speeds, minimum and maximum limits.		
p1120[0...n]	Ramp-function generator ramp-up time / RFG ramp-up time		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 0.000 [s]	Max 999999.000 [s]	Factory setting $10.000 \text { [s] }$
Description:	The ramp-function generator ramps-up the speed setpoint from standstill (setpoint $=0$) up to the maximum speed (p1082) in this time.		
Dependency:	Refer to: p1082, p1123		
Note:	The parameter is adapted during the rotating measurement (p1960>0). This is the reason that during the rotating measurement, the motor can accelerate faster than was originally parameterized.		
	For U/f control and sensorless vector control (see p1300), ramp-up times of 0 s are not expedient. The setting should be based on the startup times (r0345) of the motor.		
p1121[0...n]	Ramp-function generator ramp-down time / RFG ramp-down time		
PM230	Access level: 1 Can be changed: $\mathrm{C}(1), \mathrm{U}, \mathrm{T}$ Units group: -	Calculated: -	Data type: FloatingPoint32 Data set: DDS, p0180
		Scaling: -	
		Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0.000 \text { [s] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 999999.000[s] \end{aligned}$	$\begin{aligned} & \text { Factory setting } \\ & 30.000 \text { [s] } \end{aligned}$
Description:	The ramp-function generator ramps-down the speed setpoint from the maximum speed (p1082) down to standstill (setpoint $=0$) in this time.		
	Further, the ramp-down time is always effective for OFF1.		
Dependency:	The parameter is pre-assigned depending on the size of the power unit.		
	Refer to: p1082, p1123		
Note:	For U/f control and sensorless vector control (see p1300), ramp-down times of 0 s are not recommended. The setting should be based on the startup times (r0345) of the motor.		

p1130[0...n]	Ramp-function generator initial rounding-off time / RFG t_start_round		
PM230	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{~s}] \end{aligned}$	Max $30.000 \text { [s] }$	Factory setting 2.000 [s]
Description: Note:	Sets the initial rounding-off time for the extended ramp generator. The value applies to ramp-up and ramp-down. Rounding-off times avoid an abrupt response and prevent damage to the mechanical system.		
p1130[0...n]	Ramp-function generator initial rounding-off time / RFG t_start_round		
PM240	Access level: 2	Calculated: -	Data type: FloatingPoint32
PM250, PM260	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \text { [s] } \end{aligned}$	Max $30.000 \text { [s] }$	Factory setting 0.000 [s]
Description: Note:	Sets the initial rounding-off time for the extended ramp generator. The value applies to ramp-up and ramp-down. Rounding-off times avoid an abrupt response and prevent damage to the mechanical system.		
p1131[0...n]	Ramp-function generator final rounding-off time / RFG t_end_delay		
PM230	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling:	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{~s}] \end{aligned}$	Max $30.000 \text { [s] }$	Factory setting 2.000 [s]
Description: Note:	Sets the final rounding-off time for the extended ramp generator. The value applies to ramp-up and ramp-down. Rounding-off times avoid an abrupt response and prevent damage to the mechanical system.		
p1131[0...n]	Ramp-function generator final rounding-off time / RFG t_end_delay		
PM240	Access level: 2	Calculated: -	Data type: FloatingPoint32
PM250, PM260	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{~s}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 30.000 \text { [s] } \end{aligned}$	Factory setting 0.000 [s]
Description: Note:	Sets the final rounding-off time for the extended ramp generator. The value applies to ramp-up and ramp-down. Rounding-off times avoid an abrupt response and prevent damage to the mechanical system.		

p1135[0...n]	OFF3 ramp-down time / OFF3 t_RD		
PM230	Calculated: -	Data type: FloatingPoint32	
	Can be changed: $\mathrm{C}(1), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	$0.000[\mathrm{~s}]$	$5400.000[\mathrm{~s}]$	$30.000[\mathrm{~s}]$
		Sets the ramp-down time from the maximum speed down to zero speed for the OFF3 command.	
Description:	The parameter is pre-assigned depending on the size of the power unit.		
Dependency:	This time can be exceeded if the DC link voltage reaches its maximum value.		

p1200[0...n]	FlyRest oper mode / FlyRest op_mode
	Access level: 2 Calculated: - Data type: Integer16
	Can be changed: U, T Scaling: - Data set: DDS, p0180
	Units group: - Unit selection: -
	Min Max Factory setting 0 4 0
Description:	Sets the operating mode for flying restart. The flying restart allows the drive converter to be powered up while the motor is still rotating. In so doing, the drive converter output frequency is changed until the actual motor speed/velocity is found. The motor then accelerates up to the setpoint at the ramp-function generator setting.
Value:	$\begin{array}{ll}0: & \text { Flying restart inactive } \\ \text { 1: } & \text { Flying restart always active (start in setpoint direction) } \\ \text { 4: } & \text { Flying restart always active (start only in setpoint direction) }\end{array}$
Dependency:	A differentiation is made between flying restart for U/f control and for vector control (p 1300). Flying restart, U/f control: p1202, p1203, r1204 Flying restart, vector control: p1202, p1203, r1205 For synchronous motors, flying restart cannot be activated. Refer to: p1201 Refer to: F07330, F07331
Notice:	The "flying restart" function must be used in cases where the motor may still be running (e.g. after a brief line supply interruption) or is being driven by the load. The system might otherwise shut down as a result of overcurrent.
Note:	When p1200 = 1, 4: Flying restart is active after faults, OFF1, OFF2, OFF3. When p1200 = 1: The search is made in both directions. When p1200 = 4: The search is only made in the setpoint direction. For U/f control ($\mathrm{p} 1300<20$), the following applies: The speed can only be sensed for values above approx. 5% of the rated motor speed. For lower speeds, it is assumed that the motor is at a standstill. If p 1200 is changed during commissioning ($\mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p1200 have been changed by a parameter that was set when the drive was commissioned (e.g. p0300).

p1201[0...n]	BI: Flying restart enable signal source / Fly_res enab S_src		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection: -	Factory setting
	Min	-	1
	-		
Description:	Sets the signal source to enable the "flying restart" function.		
Dependency:	Refer to: p1200		
Note:	Withdrawing the enable signal has the same effect as setting p1200 $=0$.		

p1203[0...n]	Flying restart search rate factor / FlyRst v_Srch Fact		
PM240	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM250, PM260	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection	
	Min $10 \text { [\%] }$	$\begin{aligned} & \operatorname{Max} \\ & 4000 \text { [\%] } \end{aligned}$	Factory setting 100 [\%]
Description:	The value influences the rate at which the output frequency is changed during a flying restart . A higher value results in a longer search time.		
Caution:	An unfavorable parameter value can result in the motor behaving in an uncontrollable fashion.		
	For vector control, a value that is too low or too high can cause flying restart to become unstable.		
Note:	The parameter factory setting is selected so that standard induction motors that are rotating can be found and restarted as quickly as possible (fast flying restart).		
	With this pre-setting, if the motor is not found (e.g. for motors that are accelerated as a result of active loads or with U/f control and low speeds), we recommend that the search rate is reduced (by increasing p1203).		

r1204.0... 13	CO/BO: Flying restart, U/f control status / FlyRest Uf st				
	Access level: 4		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Data set: -	
	Units group: -		Unit selection: -		
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the status for checking and monitoring flying restart states in the U/f control mode.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Current impressed	Yes	No	-
	01	No current flow	Yes	No	-
	02	Voltage input	Yes	No	-
	03	Voltage reduced	Yes	No	-
	04	Start ramp-function generator	Yes	No	-
	05	Wait for execution	Yes	No	-
	06	Slope filter act	Yes	No	-
	07	Positive gradient	Yes	No	-
	08	Current < thresh	Yes	No	-
	09	Current minimum	Yes	No	-
	10	Search in the positive direction	Yes	No	-
	11	Stop after positive direction	Yes	No	-
	12	Stop after negative direction	Yes	No	-
	13	No result	Yes	No	-

p1215	Motor holding brake configuration / Brake config		
PM230	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selectio	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	Max	Factory setting 0
Description:	Sets the holding brake configuration.		
Value:	0: No motor holding brake being used		
Dependency:	Refer to: p1216, p1217, p1226, p1227, p1228		
Caution:	For the setting $\mathrm{p} 1215=0$, if a brake is used, it remains closed. If the motor moves, this will destroy the brake.		
Notice:	If p1215 was set to 3 , then when the pulses are suppressed, the brake is closed even if the motor is still rotating. Pulse suppression can either be caused by a 0 signal at p0844, p 0845 or p0852 or as a result of a fault with OFF2 response. If this is not desirable (e.g. for a flying restart), then the brake can be kept open using a 1 signal at p0855.		
Note:	if an external motor holding brake is being used, then p1215 should be set to 3 and r0899.12 should be interconnected as control signal.		

p1215	Motor holding brake configuration / Brake config		
PM240	Access level: 2	Calculated: -	Data type: Integer16
PM250, PM260	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection	
	$\begin{aligned} & \operatorname{Min} \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 3 \end{aligned}$	Factory setting 0
Description:	Sets the holding brake configuration.		
Value:	0 : No motor holding brake being used		
	1: Motor holding brake acc. to sequence control		
	2: Motor holding brake always open		
	3: Motor holding brake like sequence control, connection via BICO		
Dependency:	Refer to: p1216, p1217, p1226, p1227, p1228		
Caution:	For the setting p1215 $=0$, if a brake is used, it remains closed. If the motor moves, this will destroy the brake.		
Notice:	If p 1215 was set to 1 or if p1215 was set to 3 , then when the pulses are suppressed, the brake is closed even if the motor is still rotating. Pulse suppression can either be caused by a 0 signal at p0844, p0845 or p0852 or as a result of a fault with OFF2 response. If this is not desirable (e.g. for a flying restart), then the brake can be kept open using a 1 signal at p0855.		
Note:	If a holding brake integrated in the motor is used, then it is not permissible that p1215 is set to 3 . if an external motor holding brake is being used, then p1215 should be set to 3 and r0899.12 should be interconnected as control signal.		
	The parameter can only be set to zero when the pulses are inhibited.		

p1216	Motor holding brake, opening time / Brake t_open		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	$0[\mathrm{~ms}]$	$10000[\mathrm{~ms}]$	
Description:	Sets the time to open the motor holding brake.		
	After the holding brake has been controlled (opened), the speed setpoint remains at zero for this time. After this, the		
	speed setpoint is enabled.		
Dependency:	Refer to: p1215, p1217		

p1227	Zero speed detection monitoring time In_standst t_monit		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection	
	Min 0.000 [s]	Max 300.000 [s]	Factory setting 300.000 [s]
Description:	When braking with OFF1 or OFF3, standstill is identified after this time has expired, after the setpoint speed has fallen below p1226 (also refer to p1145).		
Dependency:	The parameter is pre-assigned depending on the size of the power unit.		
Notice:	For p1145 > 0.0 (RFG tracking) the setpoint is not equal to zero dependent on the selected value. This can therefore cause the monitoring time in p1227 to be exceeded. In this case, for a driven motor, the pulses are not suppressed.		
Note:	Standstill is identified in the following cases:		
	- the speed actual value falls below the speed threshold in p1226 and the time started after this in p1228 has expired.		
	- the speed setpoint falls below the speed threshold in p1226 and the time started after this in p1227 has expired. For p1227 $=300.000 \mathrm{~s}$, the following applies:		
	Monitoring is de-activated.		
	For p1227 $=0.000 \mathrm{~s}$, the following applies:		
	With OFF1 or OFF3 and a ramp-down time $=0$, the pulses are immediately suppressed and the motor "coasts" down.		
	Once the Control Unit has been booted up for the first time or if the factory settings have been defined accordingly, the parameter is defined in accordance with the power unit.		

p1228	Pulse suppression delay time / Pulse suppr t_del		
	Access level: 3	Calculated:	Data type: Floati
	Can be changed: \cup, T	Scaling: -	Data set: -
	Units group: -	Unit selection	
	Min 0.000 [s]	$\begin{aligned} & \operatorname{Max} \\ & 299.000[\mathrm{~s}] \end{aligned}$	Factory setting 0.010 [s]
Description:	After OFF1 or OFF3 and zero speed detection, the system waits for this time to expire and the pulses are then suppressed.		
Dependency:	Refer to: p1226, p1227		
Notice:	If the motor holding brake is activated, the pulse suppression is only conducted if this delay time (p1228) and then the closing time for the brake (p 1217) have elapsed.		
Note:	Standstill is identified in the following cases:		
	- the speed actual value falls below the speed threshold in p1226 and the time started after this in p1228 has expired.		
	- the speed setpoint falls below the speed threshold in p1226 and the time started after this in p1227 has expired.		

p1230[0...n]	BI: DC braking activation / DC brake act		
	Calculated: -	Data type: U32 / Binary	
	Can be changed: U, T	Scaling: -	Data set: CDS, pO170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	0	
Description:	Sets the signal source to activate DC braking.		
Dependency:	Refer to: p1231, p1232, p1233, p1234, r1239		
Note:	1 signal: DC braking activated.		
	0 signal: DC braking de-activated.		

p1232[0...n]	DC braking, braking current / DCBRK I_brake		
	Access level: 2	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min 0.00 [Arms]	Max 10000.00 [Arms]	Factory setting 0.00 [Arms]
Description:	Sets the braking current for DC braking.		
Dependency:	Refer to: p1230, p1231, p1233, p1234, r1239, p1345, p1346		
Note:	A change to the braking current becomes effective the next time that DC braking is switched-on.		
	The value for p 1232 is specified as an rms value in the 3-phase system. The magnitude of the braking current is the same as that of an identical output current at frequency zero (see r0067, r0068, p0640). The braking current is internally limited to r0067.		
	For vector control, a current value of $1.4142 \times \mathrm{p} 1232$ is obtained in the output phase U. For U/f control, the phase angle is offset by -30 degrees to obtain a current measurement of $1.2247 \times \mathrm{p} 1232$ in output phase U .		
	For the current controller, the settings of parameters p1345 and p1346 (I_max limiting controller) are used.		

p1233[0...n]	DC braking time / DCBRK time		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	$0.0[\mathrm{~s}]$	$1.0[\mathrm{~s}]$	
Description:	Sets the DC braking time (as fault response).		
Dependency:	Refer to: $\mathrm{p} 1230, \mathrm{p} 1231, \mathrm{p} 1232, \mathrm{p} 1234, \mathrm{r} 1239$		

p1234[0...n]	Speed at the start of DC braking / DCBRK n_start		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: MDS
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0.00 \text { [rpm] } \end{aligned}$	Max $210000.00 \text { [rpm] }$	Factory setting 210000.00 [rpm]
Description:	Sets the starting speed for DC braking.		
Dependency:	Refer to: p1230, p1231, p1232, p1233, r1239		

$\overline{\text { r1239.8... } 13}$	CO/BO: DC braking status word / DCBRK ZSW					
	Access level: 2		Calculated: -		Data type: Unsigned32	
	Can be changed: -		Scaling: -		Data set: -	
	Units group: -		Unit selection: -			
	Min		Max		Factory se	
	-		-			
Description:	Status word of the DC braking.					
Bit field:		Signal name		1 signal	0 signal	FP
		DC braking ac		Yes	No	7017
		DC braking rea		Yes	No	7017
		DC braking se		Yes	No	-
		DC braking se	nhibited	Yes	No	-
		DC braking for		Yes	No	-
Dependency:	Refer to: p1231, p1232, p1233, p1234					
Note:	Re bit 12, 13:					
	Only effective for p1231 $=14$.					

p1240[0...n]	Vdc controller or Vdc monitoring configuration (vector control) / Vdc_ctr config vec
PM230	Access level: 3 Calculated: - Data type: Integer16
	Can be changed: U, T Scaling: - Data set: DDS, p0180
	Units group: - Unit selection: -
	Min Max Factory setting 0 3 1
Description:	Sets the controller configuration of the DC link voltage (Vdc controller) in the closed-loop control mode. For U/f control: see p1280.
Value:	0: Inhib Vdc ctrl 1: Vdc_max controller enable 3: Vdc_min controller and Vdc_max controller enable
Dependency:	Refer to: p1245 Refer to: A07400, A07401, A07402, F07405, F07406
Notice:	An excessively high value in p1245 can possibly negatively influence the normal operation of the drive.
Note:	p1240 = 1, 3:
	When the DC link voltage limit specified for the power unit is reached the following applies: - the Vdc_max controller limits the regenerative energy in order that the DC link voltage is kept below the maximum DC link voltage when braking.
	- the ramp-down times are automatically increased. If overvoltage faults occur in spite of the Vdc_max controller being active, the ramp-down time in p1121 might need to be increased. - set the input voltage p0210 as low as possible in line with the supply voltage (in so doing avoid A07401). p1240 = 3:
	When the switch-in threshold of the Vdc_min controller is reached (p1245), the following applies: - the Vdc_min controller limits the energy taken from the DC link in order to keep the DC link voltage above the minimum DC link voltage when accelerating. - the motor is braked in order to use its kinetic energy to buffer the DC link.

p1240[0...n]	Vdc controller or Vdc monitoring configuration (vector control)/Vdc_ctr config vec		
PM240	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min	Max	
	0	3	1

Description:	Sets the controller configuration of the DC link voltage (Vdc controller) in the closed-loop control mode. For U/f control: see p1280.
Value:	0: Inhib Vdc ctrl
	1: Vdc_max controller enable
	2: Vdc_min controller (kinetic buffering) enable
	3: Vdc_min controller and Vdc_max controller enable
Dependency:	Refer to: p1245
	Refer to: A07400, A07401, A07402, F07405, F07406
Notice:	An excessively high value in p1245 can possibly negatively influence the normal operation of the drive.
Note:	p1240 = 1, 3 :
	When the DC link voltage limit specified for the power unit is reached the following applies:
	- the Vdc_max controller limits the regenerative energy in order that the DC link voltage is kept below the maximum DC link voltage when braking.
	- the ramp-down times are automatically increased.
	p1240 = 2, 3:
	When the switch-in threshold of the Vdc_min controller is reached (p1245), the following applies: - the Vdc_min controller limits the energy taken from the DC link in order to keep the DC link voltage above the minimum DC link voltage when accelerating.
	- the motor is braked in order to use its kinetic energy to buffer the DC link.

r1242	Vdc_max controller switch-in level / Vdc_max on_level		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM240	Can be changed: -	Scaling: p2001	Data set: -
	Units group: -	Unit selection: -	
	Min $-[V]$	Max - [V]	Factory setting - [V]
Description:	Displays the switch-in level for the Vdc_max controller. If p1254 $=0$ (automatic sensing of the switch-in level $=$ off), then the following applies: r1242 = 1.15 * sqrt(2) * V_mains = 1.15 * sqrt(2) * p0210 (supply voltage) PM230: r1242 is limited to Vdc_max - 50.0 V. If p1254 $=1$ (automatic sensing of the switch-in level $=$ on), then the following applies: r1242 = Vdc_max - 50.0 V (Vdc_max: Overvoltage threshold of the power unit)		
Note:	The Vdc_max controller is not switched back off until the DC-link voltage falls below the threshold 0.95 * p1242 and the controller output is zero.		
p1243[0...n]	Vdc_max controller dynamic factor / Vdc_max dyn_factor		
PM230	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
PM240	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min $1 \text { [\%] }$	$\begin{aligned} & \operatorname{Max} \\ & 10000 \text { [\%] } \end{aligned}$	Factory setting 100 [\%]
Description:	Sets the dynamic factor for the DC link voltage controller (Vdc_max controller). 100% means that p1250, p1251, and p1252 (gain, integral time, and rate time) are used corresponding to their basic settings and based on a theoretical controller optimization. If subsequent optimization is required, this can be carried out using the dynamic factor. In this case p1250, p1251, p1252 are weighted with the dynamic factor p1243.		
p1245[0...n]	Vdc_min controller switch-in level (kinetic buffering) / Vdc_min on_level		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -		
	Min $65 \text { [\%] }$	Max $150 \text { [\%] }$	Factory setting 73 [\%]
Description:	Sets the switch-in level for the Vdc-min controller (kinetic buffering). The value is obtained as follows:r1246[V] = p1245[\%] * sqrt(2) * p0210		
Dependency:	Refer to: p0210		
Warning:	An excessively high value may adversely affect normal drive operation.		

p1255[0...n]	Vdc_min controller time threshold / Vdc_min t_thresh		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM240	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min $0.000 \text { [s] }$	$\begin{aligned} & \operatorname{Max} \\ & 1800.000 \text { [s] } \end{aligned}$	Factory setting 0.000 [s]
Description:	Sets the time threshold for the Vdc_min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized. Prerequisite: p1256 = 1		
Dependency:	Refer to: F07406		
Notice:	If a time threshold has been parameterized, the Vdc_max controller should also be activated (p1240=3) so that the drive does not shut down with overvoltage when Vdc_min control is exited (due to the time violation) and in the event of fault response OFF3. It is also possible to increase the OFF3 ramp-down time p1135.		
p1256[0...n]	Vdc_min controller response (kinetic buffering) / Vdc_min response		
PM230	Access level: 3	Calculated: -	Data type: Integer16
PM240	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Sets the response for the Vdc_min controller (kinetic buffering).		
Value:	0: Buffer Vdc until undervoltage, n<p1257 -> F07405 1: Buff. Vdc until undervolt., n<p1257 -> F07405, t>p1255 -> F07406		
Dependency:	Refer to: F07405, F07406		
p1257[0...n]	Vdc_min controller speed threshold / Vdc_min n_thresh		
PM230	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
PM240	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	Min 0.00 [rpm]	Max 210000.00 [rpm]	Factory setting 50.00 [rpm]
Description:	Sets the speed threshold for the Vdc-min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized		
r1258	CO: Vdc controller output / Vdc_ctrl output		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM240	Can be changed: -	Scaling: p2002	Data set: -
	Units group: 6_2	Unit selection: p0505	
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the actual output of the Vdc controller (DC link voltage controller)		
Note:	The regenerative power limit p1531 is used for vector control to pre-control the Vdc_max controller. The lower the power limit is set, the lower the correction signals of the controller when the voltage limit is reached.		

p1280[0...n]	Vdc controller or Vdc monitoring configuration (U/f) / Vdc_ctr config U/f
PM230	Access level: 3 Calculated: - Data type: Integer16
	Can be changed: U, T Scaling: - Data set: DDS, p0180
	Units group: - Unit selection: -
	Min Max Factory setting 0 1 1
Description: Value:	Sets the configuration of the controller for the DC link voltage (Vdc controller) in the U/f operating mode. 0: Inhib Vdc ctrl 1: Vdc_max controller enable
Note:	For high input voltages (see p0210), the following settings can improve the degree of ruggedness of the Vdc_max controller: - Set the input voltage p0210 as low as possible (in so doing avoid A07401). - Set the rounding times ($\mathrm{p} 1130, \mathrm{p} 1136$). - Increase the ramp-down times (p1121). - Reduce the integral time of the controller (p1291) (factor 0.5). - Activate the Vdc correction in the current controller (p1810 bit $1=1$) or reduce the derivative action time of the controller (p1292) (factor 0.5). In this case, we always recommend using vector control (p1300 = 20) (Vdc controller, see p1240).
p1280[0...n]	Vdc controller or Vdc monitoring configuration (U/f) / Vdc_ctr config U/f
PM240	Access level: 3 Calculated: - Data type: Integer16
	Can be changed: U, T Scaling: - Data set: DDS, p0180
	Units group: - Unit selection: -
	Min Max Factory setting 0 3 1
Description:	Sets the configuration of the controller for the DC link voltage (Vdc controller) in the U/f operating mode.
Value:	0 : Inhib Vdc ctrl 1: Vdc_max controller enable 2: Vdc_min controller (kinetic buffering) enable 3: Vdc_min controller and Vdc_max controller enable
Note:	For high input voltages (see p0210), the following settings can improve the degree of ruggedness of the Vdc_max controller: - Set the input voltage p0210 as low as possible (in so doing avoid A07401). - Set the rounding times ($\mathrm{p} 1130, \mathrm{p} 1136$). - Increase the ramp-down times (p1121). - Reduce the integral time of the controller (p1291) (factor 0.5). - Activate the Vdc correction in the current controller (p1810 bit $1=1$) or reduce the derivative action time of the controller (p1292) (factor 0.5). In this case, we generally recommend to use vector control (p1300 = 20) (Vdc controller, see p1240). The following measures are suitable to improve the Vdc_min controller: - Optimize the Vdc_min controller (see p1287). - Activate the Vdc correction in the current controller (p1810 bit $1=1$).

p1288[0...n] Vdc_max controller feedback coupling factor ramp-fct. gen. (U/f) / Vdc_max factor RFG
Can be changed: U, T Scaling: - Data set: DDS, p0180
Units group: - Unit selection: -
Min Max \quad Factory setting

Description: Sets the feedback factor for the ramp-function generator. Its ramp times are decelerated relative to the output signal of the Vdc_max controller.
Note: \quad For values $\mathrm{p} 1288=0.0$ to 0.5 , the controller dynamics are automatically adapted internally.

p1290[0...n]	Vdc controller proportional gain (U/f) / Vdc_ctrl Kp		
PM230	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
PM240	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	0.00	100.00	1.00
Description:	Sets the proportional gain for the Vdc controller (DC link voltage controller).		
Note:	The gain factor is proportional to the capacitance of the DC link. The parameter is pre-set to a value that is optimally adapted to the capacitance of the power unit.		

p1291[0...n]	Vdc controller integral time (U/f) / Vdc_ctrl Tn		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM240	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 0 [ms]	Max 10000 [ms]	Factory setting 40 [ms]
Description:	Sets the integral time for the Vdc controller (DC link voltage controller).		
p1292[0...n]	Vdc controller rate time (U/f) / Vdc_ctrl t_rate		
PM230	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
PM240	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 0 [ms]	Max 1000 [ms]	Factory setting 10 [ms]
Description:	Sets the rate time constant for the Vdc controller (DC link voltage controller).		

p1293[0...n]	Vdc min controller output limit (U/f) / Vdc_min outp_lim		
PM240	Access level: 4	Calculated: p0340 $=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 600.00[\mathrm{~Hz}] \end{aligned}$	Factory setting 600.00 [Hz]
Description:	Sets the output limit for the Vdc min controller (DC link undervoltage controller).		
p1294	Vdc_max controller automatic detection ON signal level (U/f) / Vdc_max SenseOnLev		
PM230	Access level: 3	Calculated: -	Data type: Integer16
PM240	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1 \end{aligned}$	Factory setting 0
Description:	Activates/de-activates the automatic sensing of the switch-in level for the Vdc_max controller. When the sensing function is de-activated, the activation threshold r1282 for the Vdc_max controller is determined from the parameterized connection voltage p0210.		
Value:	0 : Automatic detec 1: Automatic detec		
p1295[0...n]	Vdc_min controller time threshold (U/f) / Vdc_min t_thresh		
PM240	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 0.000 [s]	$\begin{aligned} & \text { Max } \\ & 10000.000[s] \end{aligned}$	Factory setting 0.000 [s]
Description:	Sets the time threshold for the Vdc_min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized.		
	Prerequisite: $\mathrm{p} 1296=1 . \quad 1{ }^{\text {a }}$.		
Notice:	If a time threshold has been parameterized, the Vdc_max controller should also be activated $(\mathrm{p} 1280=3)$ so that the drive does not shut down with overvoltage when Vdc_min control is exited (due to the time violation) and in the event of fault response OFF3. It is also possible to increase the OFF3 ramp-down time p1135.		
p1296[0...n]	Vdc_min controller response (kinetic buffering) (U/f I Vdc_min response		
PM240	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1 \end{aligned}$	Factory setting 0
Description:	Sets the response for the Vdc_min controller (kinetic buffering).		
Value:	$\begin{array}{ll}\text { 0: } & \text { Buffer Vdc until undervoltage, } \mathrm{n}<\mathrm{p} 1297->\text { F07405 } \\ \text { 1: } & \text { Buff. Vdc until undervolt., } \mathrm{n}<\mathrm{p} 1297->\text { F07405, } \mathrm{t}>\text { p1295 }->\text { F07406 }\end{array}$		
Note:	The quick stop ramp entered in p1135 must not be equal to zero, to prevent overcurrent shutdown if F07406 is triggered.		

p1297[0...n]	Vdc_min controller speed threshold (U/f) / Vdc_min n_thresh		
PM240	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [rpm] } \end{aligned}$	Max 210000.00 [rpm]	Factory setting 50.00 [rpm]
Description:	Sets the speed threshold for the Vdc-min controller (kinetic buffering).		

r1298	CO: Vdc controller output (U/f) / Vdc_ctrl output		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM240	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection: p	
	Min - [rpm]	Max - [rpm]	Factory setting - [rpm]
Description:	Displays the actual output of the Vdc controller (DC link voltage controller)		
p1300[0...n]	Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(1)$, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 22 \end{aligned}$	Factory setting 0

Description: Sets the open and closed-loop control mode of a drive.

0 : U/f control with linear characteristic
1: U/f control with linear characteristic and FCC
U/f control with parabolic characteristic
U/f control with parameterizable characteristic
U/f control with linear characteristic and ECO
U/f control for drives requiring a precise freq. (e.g. textiles)
U/f control for drives requiring a precise frequency and FCC
U/f control for a parabolic characteristic and ECO
19: U/f control with independent voltage setpoint
20: Speed control (encoderless)
22: Torque control (encoderless)
Dependency: Only operation with U/f characteristic is possible if the rated motor speed is not entered (p0311).
Operation with a U/f characteristic is not supported for 1LE4 synchronous motors.
Refer to: p0300, p0311, p0500, p1501
Notice: \quad Active slip compensation is required in the U/f control types with Eco mode (p1300 = 4, 7). The scaling of the slip compensation (p1335) should be set so that the slip is completely compensated (generally 100\%).
The Eco mode is only effective in steady-state operation and when the ramp-function generator is not bypassed. In the case of analog setpoints, if required the tolerance for ramp-up and ramp-down should be actively increased for the ramp-function generator using p1148 in order to reliably signal a steady-state condition.
Note: \quad Only by selecting closed-loop speed control $(p 1300=20)$ is it possible to change over in operation to closed-loop torque control (p1501). At the changeover, the setting of p1300 does not change. In this case, the actual state is displayed in r1407, bit 2 and bit 3.
For the open-loop control modes p1300 = 5 and 6 (textile sector), slip compensation p1335, resonance damping p1338, and the Imax frequency controller are switched off internally so that the output frequency can be set precisely. The Imax voltage controller remains active.
During operation (the pulses enabled) the open-loop/closed-loop control mode cannot be changed by changing over drive data sets.

p1312[0...n]	Voltage boost when starting / U_boost starting		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min $0.0 \text { [\%] }$	$\begin{aligned} & \operatorname{Max} \\ & 250.0 \text { [\%] } \end{aligned}$	Factory setting 0.0 [\%]
Description:	Setting for an additional voltage boost when powering-up, however, only for the first acceleration phase. The voltage boost becomes effective for a positive setpoint increase and disappears as soon as the setpoint has been reached. The build-up and withdrawal of the voltage boost are smoothed.		
Dependency:	The current limit p0640 limits the boost. Refer to: p1300, p1310, p1311, r1315		
Notice:	The voltage boost results in a higher motor temperature increase.		
Note:	The voltage boost when accelerating can improve the response to small, positive setpoint changes. Assigning priorities for the voltage boosts: refer to p1310		
r1315	Voltage boost total / U_boost total		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Data set: -
	Units group: -	Unit selection: -	
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the total resulting voltage boost in volt.$\mathrm{r} 1315=\mathrm{p} 1310+\mathrm{p} 1311+\mathrm{p} 1312$		
Dependency:	Refer to: p1310, p1311, p1312		
p1320[0...n]	U/f control programmable characteristic frequency 1 / Uf char f1		
	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min $0.00[\mathrm{~Hz}]$	$\begin{aligned} & \operatorname{Max} \\ & 3000.00[\mathrm{~Hz}] \end{aligned}$	Factory setting $0.00[\mathrm{~Hz}]$
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the first point along the characteristic.		
Dependency:	The following applies to the frequency values: p1320 <= p1322 < = p1324 <= p1326. Otherwise, a standard characteristic is used that contains the rated motor operating point.		
Note:	Linear interpolation is ca The voltage boost when	veen the points $0 \mathrm{~Hz} / \mathrm{p} 1310$ (p1311) is also applied to	$321 \text {... p1326/p1327. }$ grammable U/f characteristic.

p1321[0...n]	U/f control programmable characteristic voltage 1 / Uf char U1		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 0.0 [Vrms]	Max 10000.0 [Vrms]	Factory setting 0.0 [Vrms]
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the first point along the characteristic.		
Dependency:	Selects the freely programmable characteristic using p1300 $=3$.		
Note:	Linear interpolation is carried out between the points $0 \mathrm{~Hz} / \mathrm{p} 1310, \mathrm{p} 1320 / \mathrm{p} 1321 \ldots \mathrm{l}$ p1326/p1327.		
p1322[0...n]	U/f control programmable characteristic frequency 2 I Uf char f2		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\operatorname{Min}_{0.00[\mathrm{~Hz}]}$	$\begin{aligned} & \operatorname{Max} \\ & 3000.00[\mathrm{~Hz}] \end{aligned}$	Factory setting $0.00[\mathrm{~Hz}]$
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the second point along the characteristic.		
Dependency:	The following applies to the frequency values: p1320 <= p1322 <= p1324 <= p1326. Otherwise, a standard characteristic is used that contains the rated motor operating point.		
p1323[0...n]	U/f control programmable characteristic voltage 2 I Uf char U2		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 0.0 [Vrms]	Max 10000.0 [Vrms]	Factory setting 0.0 [Vrms]
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the second point along the characteristic.		
Dependency:	Refer to: p1310, p1311, p1320, p1321, p1322, p1324, p1325, p1326, p1327		
p1324[0...n]	U/f control programmable characteristic frequency 3 / Uf char f3		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0.00[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 3000.00[\mathrm{~Hz}] \end{aligned}$	Factory setting 0.00 [Hz]
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the third point along the characteristic.		
Dependency:	The following applies to the frequency values: p1320 <= p1322 <= p1324 <= p1326. Otherwise, a stan teristic is used that contains the rated motor operating point. Refer to: p1310, p1311, p1320, p1321, p1322, p1323, p1325, p1326, p1327		

p1327[0...n]	U/f control programmable characteristic voltage 4 I Uf char U4		
	Access level: 3	Calculated: p0340 = 1,3	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 0.0 [Vrms]	Max 10000.0 [Vrms]	Factory setting 0.0 [Vrms]
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the fourth point along the characteristic.		
Dependency:	Selects the freely programmable characteristic using p1300 $=3$. Refer to: p1310, p1311, p1320, p1321, p1322, p1323, p1324, p1325, p1326		
Note:	Linear interpolation is carried out between the points $0 \mathrm{~Hz} / \mathrm{p} 1310, \mathrm{p} 1320 / \mathrm{p} 1321 \ldots \mathrm{p} 1326 / \mathrm{p} 1327$.		321 ... p1326/p1327. ogrammable U/f characteristic

p1330[0...n]	CI: U/f control independent voltage setpoint / Uf U_set independ.		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2001	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Dependency:	Sets the signal source for the voltage setpoint for U/f control with an independent voltage setpoint (p1300=19). Selects the U/f control with independent voltage setpoint via p1300 = 19 .		

p1333[0...n]	U/f control FCC starting frequency / U/f FCC f_start		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0.00[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 3000.00[\mathrm{~Hz}] \end{aligned}$	Factory setting 0.00 [Hz]
Description:	Sets the starting frequency at which FCC (Flux Current Control) is activated.		
Dependency:	The correct operating mode must be set (p1300 = 1, 6).		
Warning:	An excessively low value can result in instability.		
$!$			
Note:	For p1333 $=0 \mathrm{~Hz}$, the FCC starting frequency is automatically set to 6% of the rated motor frequency.		
p1334[0...n]	U/f control slip compensation starting frequency I Slip comp start		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0.00[\mathrm{~Hz}] \end{aligned}$	Max 3000.00 [Hz]	Factory setting $0.00[\mathrm{~Hz}]$
Description:	Sets the starting frequency of the slip compensation.		
Note:	For p1334 $=0$, the starting frequency of the slip compensation is automatically set to 6% of the rated motor frequency.		
p1335[0...n]	Slip compensation, scaling / Slip comp scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min}_{0} \\ & 0.0 \end{aligned}$	Max 600.0 [\%]	Factory setting $0.0 \text { [\%] }$
Description:	Sets the setpoint for slip compensation in [\%] referred to r0330 (motor rated slip). p1335 $=0.0 \%$: Slip compensation de-activated. p1335 = 100.0 \%: The slip is completely compensated.		
Dependency:	Prerequisite for a precise slip compensation for p1335 = 100% are the precise motor parameters (p0350 ... p0360). If the parameters are not precisely known, a precise compensation can be achieved by varying p1335.		
Note:	The purpose of slip compensation is to maintain a constant motor speed regardless of the applied load. The fact that the motor speed decreases with increasing load is a typical characteristic of induction motors.		
	For synchronous motors, this effect does not occur and the parameter has no effect in this case. For the open-loop control modes p1300 $=5$ and 6 (textile sector), the slip compensation is internally disabled in order to be able to precisely set the output frequency.		
	If p1335 is changed during commissioning ($\mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p 1335 have been changed by a parameter that was set when the drive was commissioned (e.g. p0300).		

p1336[0...n]	Slip compensation limit value / Slip comp lim val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min $0.00 \text { [\%] }$	$\begin{aligned} & \operatorname{Max} \\ & 600.00 \text { [\%] } \end{aligned}$	Factory setting 250.00 [\%]
Description:	Sets the limit value for slip compensation in [\%] referred to r0330 (motor rated slip).		
r1337	CO: Actual slip compensation / Slip comp act val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min - [\%]	$\begin{aligned} & \operatorname{Max} \\ & -[\%] \end{aligned}$	Factory setting - [\%]
Description: Dependency:	Displays the actual com p1335 > 0 \%: Slip comp Refer to: p1335	[\%] referred to r0330 (rated e.	
p1338[0...n]	U/f mode resonance damping gain / Uf Res_damp gain		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	0.00	100.00	0.00
Description:	Sets the gain for resonance damping for U/f control.		
Dependency:	Refer to: p1300, p1339, p1349		
Note:	The resonance damping function dampens active current oscillations that frequency occur under no-load conditions.		
	The resonance damping is active in a range of approximately $5 \ldots 90 \%$ of the rated motor frequency (p0310), but up to a maximum of 45 Hz .		
	For the open-loop control modes p1300 = 5 and 6 (textile sectors), the resonance damping is internally disabled in order that the output frequency can be precisely set.		
p1339[0...n]	U/f mode resonance damping filter time constant / Uf Res_damp T		
	Access level: 4	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min $1.00 \text { [ms] }$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00[\mathrm{~ms}] \end{aligned}$	Factory setting 20.00 [ms]
Description: Dependency:	Sets the filter time constant for resonance damping for U/f control. Refer to: p1300, p1338, p1349		

p1340[0...n]	I_max frequency controller proportional gain / I_max_ctrl Kp		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0.000 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 0.500 \end{aligned}$	Factory setting 0.000
Description:	In the U/f operating modes (p1300) for the I_max control, one controller is used that acts on the output frequency and one controller that acts on the output voltage. The frequency controller reduces the current by decreasing the converter output frequency. The frequency is reduced down to a minimum value (equaling twice rated slip). If the overcurrent condition cannot be successfully resolved using this measure, then the drive converter output voltage is reduced using the I_max voltage controller. Once the overcurrent condition has been resolved, the drive is accelerated along the ramp set in p1120 (ramp-up time).		
Dependency:	In the U/f modes (p1300) for textile applications and for external voltage setpoints, only the I_max voltage controller is used.		
Notice:	When the maximum current (r0067) is exceeded, the output current is no longer reduced, however, overcurrent alarm messages are generated. The drive is shut down if the overcurrent limit (r0209) is exceeded.		
Note:	The I_max limiting controller becomes ineffective if the ramp-function generator is de-activated with p1122 = 1 . p1341 = 0: I_max frequency controller de-activated and I_max voltage controller activated over the complete speed range.		
p1341[0...n]	I_max frequency controller integral time / I_max_ctrl Tn		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \text { [s] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 50.000 \text { [s] } \end{aligned}$	Factory setting 0.300 [s]
Description:	Sets the integral time for the I_max frequency controller.		
Dependency:	Refer to: 1340		
Note:	When p1341 = 0 , the current limiting controller influencing the frequency is de-activated and only the current limiting controller influencing the output voltage remains active (p1345, p1346).		
	In the case of power units with regenerative feedback (PM250, PM260), current limitation control for a regenerative load is always implemented by influencing the frequency. This current limiting function is de-activated with p1340 $=$ $\mathrm{p} 1341=0$.		
r1343	CO: I_max controller frequency output / I_max_ctrl f_outp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1		
	Min - [rpm]	Max - [rpm]	Factory setting - [rpm]
Description:	Displays the effective frequency limit.		
Dependency:	Refer to: p1340		
r1344	I_max controller voltage output / I_max_ctrl U_outp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Data set: -
	Units group: 5_1	Unit selection: p0505	
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description: Dependency:	Displays the amount by which the converter output voltage is reduced.		

p1345[0...n]	I_max voltage controller proportional gain / I_max_U_ctrl Kp		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	0.000	100000.000	0.000
Description:	Sets the proportional gain for the I_max voltage controller.		
Dependency:	Refer to: p1340		
Note:	The controller settings are also used in the current controller of the DC braking (refer to p1232).		
p1346[0...n]	I_max voltage controller integral time / I_max_U_ctrl Tn		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	0.000 [s]	50.000 [s]	0.030 [s]
Description:	Sets the integral time for the I_max voltage controller.		
Dependency:	Refer to: p1340		
Note:	p1346 = 0: Integral time of the I_max voltage controller de-activated.		
	The controller settings are also used in the current controller of the DC braking (refer to p1232).		
r1348	CO: U/f control Eco factor actual value / U/f Eco fac act v		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the economic factor determined for optimizing motor consumption.		
Dependency:	Refer to: p1335		
Note:	The value is only determined for operating modes with Economic (p1300 = 4, 7).		
p1349[0...n]	U/f mode resonance damping maximum frequency / Uf res_damp f_max		
	Access level: 4	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 3000.00[\mathrm{~Hz}] \end{aligned}$	Factory setting $0.00[\mathrm{~Hz}]$
Description:	Sets the maximum output frequency for resonance damping for U/f control. Resonance damping is inactive above this output frequency.		
Dependency:	Refer to: p1338, p1339		
Note:	For p1349 = 0, the changeover limit is automatically set to 95% of the rated motor frequency - however, to a max. of 45 Hz .		

p1416[0...n]	Speed setpoint filter 1 time constant / n_set_filt 1 T		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 5000.00[\mathrm{~ms}] \end{aligned}$	Factory setting 0.00 [ms]
Description:	Sets the time constant for the speed setpoint filter 1 (PT1).		
r1438	CO: Speed controller, speed setpoint / n_ctrl n_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection:	
	Min - [rpm]	Max - [rpm]	Factory setting - [rpm]
Description:	Displays the speed setpoint after setpoint limiting for the P component of the speed controller. For U/f operation, the value that is displayed is of no relevance.		
Dependency:	Refer to: r1439		
Note:	In the standard state (the reference model is de-activated), r1438 $=\mathrm{r} 1439$.		
r1439	Speed setpoint, I component / n_set I_comp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection: p	
	Min - [rpm]	Max - [rpm]	Factory setting - [rpm]
Description:	Displays the speed setpoint for the I component of the speed controller (output of the reference model after the setpoint limiting).		
Dependency:	Refer to: r1438		
Note:	In the standard state (the reference model is de-activated), r1438 $=\mathrm{r} 1439$.		

r1444	Speed controller, speed setpoint steady-state (static) / n_ctrl n_set stat		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection: p0505	
	Min - [rpm]	Max - [rpm]	Factory setting - [rpm]
Description:	Displays the sum of all The following sources - setpoint at the ramp-fu - speed setpoint 1 (p11 - speed setpoint 2 (p11 - speed setpoint for the - setpoint from DSC (for - setpoint via PC (for m	ts that are present. r the displayed setpoint: tor input (r1119). trol (p1430). ctive).	
Dependency:	Refer to: r1119, p1155, p1160		
r1445	CO: Actual speed smoothed / n_act smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection: p0505	
	Min - [rpm]	Max - [rpm]	Factory setting - [rpm]
Description:	Displays the actual smoothed actual speed for speed control.		
p1452[0...n]	Speed controller speed actual value smoothing time (SLVC) / n_C n_act T_s SLVC		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0.00[\mathrm{~ms}] \end{aligned}$	Max 32000.00 [ms]	Factory setting 10.00 [ms]
Description: Note:	Sets the smoothing time for the actual speed of the speed controller for encoderless closed-loop speed control. The smoothing must be increased if there is gear backlash. For longer smoothing times, the integral time of the speed controller must also be increased (e.g. using p0340 = 4).		
r1454	CO: Speed controller system deviation I component / n_ctrl sys dev Tn		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection: p0505	
	Min - [rpm]	Max - [rpm]	Factory setting - [rpm]
Description:	Displays the system deviation of the I component of the speed controller.		
p1455[0...n]	CI: Speed controller P gain adaptation signal / n_ctrl Adpt_sig Kp		
	Access level: 4	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Dependency:	Sets the source for the adaptation signal to additionally adapt the P gain of the speed controller. Refer to: p1456, p1457, p1458, p1459		

p1461[0...n]	Speed controller Kp adaptation speed, upper scaling / n_ctrl Kp n upper		
	Access level: 3	Calculated: p0340 $=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.0[\%] \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 20000.0 \\ & \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description:	Sets the P gain of the speed controller for the upper adaptation speed range ($>\mathrm{p} 1465$). The entry is made referred to the P gain for the lower adaptation speed range of the speed controller (\% referred to p 1470).		
Dependency:	Refer to: p1464, p1465		
Note:	If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition p1464, then the controller gain below p1465 is adapted with p1461. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.		

p1463[0...n]	Speed controller Tn adaptation speed, upper scaling / n_ctrl Tn \mathbf{n} upper		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.0[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200000.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description:	Sets the integral time of the speed controller after the adaptation speed range (> p 1465). The entry is made referred to the integral time for the lower adaptation speed range of the speed controller (\% referred to p1472).		
Dependency:	Refer to: p1464, p1465		
Note:	If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition point p1464, then the controller integral time below p1465 is adapted with p1463. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.		

p1464[0...n]	Speed controller adaptation speed, lower / n_ctrl n lower		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{rpm}] \end{aligned}$	Max 210000.00 [rpm]	Factory setting 0.00 [rpm]
Description:	Sets the lower adaptation speed of the speed controller. No adaptation is effective below this speed.		
Dependency:	Refer to: p1461, p1463, p1465		
Note:	If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition point p1464, then the controller below p1465 is adapted with p1461 or p1463. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.		

p1465[0...n]	Speed controller adaptation speed, upper / n_ctrl \mathbf{n} upper		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	$\operatorname{Min}_{0.00[r p m]}$	$\begin{aligned} & \operatorname{Max} \\ & 210000.00[\mathrm{rpm}] \end{aligned}$	Factory setting 210000.00 [rpm]
Description:	Sets the upper adaptatio No adaptation is effectiv For P gain, p1470 x p14	he speed controller. speed. . For the integral time, p1472	is effective.
Dependency:	Refer to: p1461, p1463, p1464		
Note:	If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition point p1464, then the controller below p1465 is adapted with p1461 or p1463. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.		

p1466[0...n]	CI: Speed controller P-gain scaling / n_ctrl Kp scal		
	Access level: 4	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	$\underline{M i n}$	Max	Factory setting 1
Description:	Sets the signal source for the scaling of the P gain of the speed controller. This also makes the effective P gain (including adaptations) scalable.		
r1468	CO: Speed controller P-gain effective / n_ctr Kp eff		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Displays the effective P	eed controller	
r1469	Speed controller integral time effective / n_ctr Tn eff		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & -[\mathrm{ms}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{ms}] \end{aligned}$	Factory setting - [ms]
Description:	Displays the effective int	the speed controller.	
p1470[0...n]	Speed controller encoderless operation P-gain / n_ctrl SLVC Kp		
	Access level: 2	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0.000 \end{aligned}$	Max 999999.000	Factory setting 0.300
Description:	Sets the P gain for encoderless operation for the speed controller.		
	The product p0341 $\times \mathrm{p} 0342$ is taken into account when automatically calculating the speed controller ($\mathrm{p} 0340=1,3$, 4).		
p1472[0...n]	Speed controller encoderless operation integral time / n_ctrl SLVC Tn		
	Access level: 2	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 0.0 [ms]	Max 100000.0 [ms]	Factory setting 20.0 [ms]
Description:	Set the integral time for encoderless operation for the speed controller.		
Note:	The integral component is stopped if the complete controller output or the sum of controller output and torque precontrol reach the torque limit.		

p1475[0...n]	CI: Speed controller torque setting value for motor holding brake / n_ctrl M_sv MHB		
	Access level: 3	Calculated: -	Data type: U32 / Floating
	Can be changed: T	Scaling: p2003	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal source for the torque setting value when starting up with motor holding brake.		
Dependency:	The switching in of the torque setting value for the motor holding brake has a higher priority than the setting of the integrator value using p1477 and p1478.		
Note:	The setting of the integral output of the speed controller begins after magnetizing (see p0346, r0056 bit 4) and ends at the end of the brake control opening time p1216. A setting value of zero means that no setting procedure will take place.		
	If p1351 is used as a signal source for the torque setting value, the percentage value is interpreted in relation to the rated torque (p2003).		
p1476[0...n]	BI: Speed controller hold integrator / n_ctrl integ stop		
	Access level: 4	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Sets the signal source to hold the integrator for the speed controller.		
p1477[0...n]	BI: Speed controller set integrator value I n_ctrl integ set		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to set the integrator setting value (p1478).		
Dependency:			
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1478[0...n]	CI: Speed controller integrator setting value I n_ctr integ_setVal		
	Access level: 3	Calculated: -	Data type: U32 / Floating
	Can be changed: T	Scaling: p2003	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
			0
Description:	Sets the signal source for the integrator setting value for the velocity controller. The signal to set this integrator setting value is interconnected via p1477.		
Dependency:	The setting value of the speed controller integrator is weighted with the scaling factor of the signal source in p1479. If p1478 is interconnected to the integral output of the speed controller (r 1482), then after the magnetizing time (r0346) and if the speed controller is enabled, the integral component of the controller is set to the last value before the pulse inhibit. This value is set if no setting command (p1477) is interconnected or, at the instant that the pulses were inhibited, a setting command is available, which is not de-activated up to the next time that the pulses are inhibited. For sensorless vector control, in addition p1400.1 should be set to 1 so that when the drive is stopped, the integral component of the speed controller is not controlled down to zero.		
	In order that when setting the integrator output, only the static torque is detected, we recommend that the accelerating torque is completely pre-controlled (e.g. p1496).		
	If p 1478 is interconnected to another output other than r 1482 , then after magnetizing and speed controller enable, the integral output is set once if the setting command is not interconnected (p1477 = 0).		
	Refer to: p1477, p1479		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p1479[0...n]	CI: Speed controller integrator setting value scaling / n_ctrl I_val scal		
	Access level: 4	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 1
Description: Dependency:	Sets the signal source for scaling the integrator setting value (p1478) of the speed controller. Refer to: p1477, p1478		
r1482	CO: Speed controller I torque output / n_ctrl I-M_output		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Data set: -
	Units group: 7_1	Unit selection: p0505	
	Min - [Nm]	Max - [Nm]	Factory setting - [Nm]
Description:	Displays the torque setpoint at the output of the I speed controller.		
p1486[0...n]	CI: Droop compensation torque / Droop M_comp		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2003	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal source for the compensation torque to be output within the droop calculation.		
p1487[0...n]	Droop compensation torque scaling / Droop M_comp scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & -2000.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 2000.0[\%] \end{aligned}$	Factory setting 100.0 [\%]
Description:	Sets the scaling for the compensation torque within the droop calculation.		
p1488[0...n]	Droop input source / Droop input source		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\underset{2}{\operatorname{Max}}$	Factory setting 0
Description:	Sets the source for droop feedback.		
Value:	$\begin{array}{ll}\text { 1: } & \text { Droop from torque setpoint } \\ \text { 2: } & \text { Droop from speed controller output } \\ \text { 3: } & \text { Droop from integral output, speed controller }\end{array}$		
Dependency:	Refer to: p1489, r1490, p1492		

p1489[0...n]	Droop feedback scaling / Droop scaling		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0.000 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 0.500 \end{aligned}$	Factory setting 0.050
Description:	Sets the scaling for the droop feedback		
Dependency:	Refer to: p1488, r1490, p1492		
Note:	Example:		
	A value of 0.05 means that for a torque equal to the rated motor torque, the rated motor speed is reduced by 5%.		
r1490	CO: Droop feedback speed reduction / Droop n_reduction		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection: p	
	Min - [rpm]	Max - [rpm]	Factory setting - [rpm]
Description:	Displays the output signal of the droop calculation. The droop feedback result is subtracted from the speed setpoint when activated (p1492).		
Dependency:	Refer to: p1488, p1489, p1492		
p1492[0...n]	BI: Droop feedback enable / Droop enable		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Enables the droop to be applied to the speed/velocity setpoint.		
Dependency:	Refer to: p1488, p1489, r1490		
Note:	Even when not enabled, the droop speed is calculated but not subtracted from the setpoint speed. This makes it possible to subtract the result of this calculation from the speed of another drive.		
r1493	CO: Moment of inertia, total / M_inertia total		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: -
	Units group: 25_1	Unit selection: p	
	Min - [kgm ${ }^{2}$]	Max - [kgm²]	Factory setting - [kgm ${ }^{2}$]
Description:	Displays the parameterized total moment of inertia ((p0341 * p0342) * p1496).		

p1503[0...n]	CI: Torque setpoint / M_set		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2003	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal source for the torque setpoint for torque control.		
Note:	A change is made to closed-loop torque control if, in p1300, closed-loop torque control was selected or if the selection was made using the changeover source in p1501.		
r1508	CO: Torque setpoint before supplementary torque / M_set bef. M_suppl		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Data set: -
	Units group: 7_1	Unit selection: p050	
	Min - [Nm]	Max - [Nm]	Factory setting - [Nm]
Description:	For closed-loop speed control, r1508 corresponds to the speed controller output; for closed-loop torque control, r1508 corresponds to the torque setpoint of the signal source assigned in p1503.		
p1511[0...n]	CI: Supplementary torque 1 / M_suppl 1		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2003	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal source for supplementary torque 1.		
p1512[0...n]	CI: Supplementary torque 1 scaling / M_suppl 1 scal		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal source for scaling the supplementary torque 1.		
p1513[0...n]	CI: Supplementary torque 2 / M_suppl 2		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2003	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal source for supplementary torque 2.		

p1514[0...n]	Supplementary torque 2 scaling / M_suppl 2 scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & -2000.0[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 2000.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description:	Sets the scaling for supplementary torque 2.		
r1515	Supplementary torque total / M_suppl total		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Data set: -
	Units group: 7_1	Unit selection: p0505	
	Min - [Nm]	Max - [Nm]	Factory setting - [Nm]
Description:	Displays the total supplementary torque.		
r1516	CO: Supplementary torque and acceleration torque / M_suppl + M_accel		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Data set: -
	Units group: 7_1	Unit selection: p0505	
	Min - [Nm]	Max - [Nm]	Factory setting - [Nm]
Description:	The displayed value is the total of the smoothed supplementary torque and the accelerating torque (p1516 = p1518[1] + r1515).		
p1517[0...n]	Accelerating torque smoothing time constant / M_accel T_smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.00[\mathrm{~ms}] \end{aligned}$	Factory setting 4.00 [ms]
Description:	Sets the smoothing time constant of the accelerating torque.		
Note:	The acceleration pre-control is inhibited if the smoothing is set to the maximum value.		
r1518[0...1]	CO: Accelerating torque / M_accel		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Data set: -
	Units group: 7_1	Unit selection: p0505	
	Min - [Nm]	Max - [Nm]	Factory setting - [Nm]
Description: Index:	Displays the accelerating torque for pre-control of the speed controller. [0] = Unsmoothed [1] = Smoothed		
Dependency:	Refer to: p0341, p0342, p1496		

p1520[0...n]	CO: Torque limit upper / M_max upper		
	Access level: 2	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2003	Data set: DDS, p0180
	Units group: 7_1	Unit selection: p0505	
	$\underset{-1000000.00[\mathrm{Nm}]}{\operatorname{Min}}$	Max 20000000.00 [Nm]	Factory setting 0.00 [Nm]
Description:	Sets the fixed, upper torque limit.		
Dependency:	Refer to: p1521, p1522, p1523, r1538, r1539		
	Negative values when setting the upper torque limit $(\mathrm{p} 1520<0)$ can result in the motor accelerating in an uncontrollable fashion.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	The torque limit is limited to 400% of the rated motor torque. When automatically calculating the motor/closed-loop control parameters (p 0340), the torque limit is set to match the current limit (p 0640).		
p1521[0...n]	CO: Torque limit lower / M_max lower		
	Access level: 2	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2003	Data set: DDS, p0180
	Units group: 7_1	Unit selection: p0505	
	$\operatorname{Min}_{-20000000.00[\mathrm{Nm}]}$	$\operatorname{Max}_{1000000.00[\mathrm{Nm}]}$	Factory setting 0.00 [Nm]
Description:	Sets the fixed, lower torque limit.		
Dependency:	Refer to: p1520, p1522, p1523		
	Positive values when setting the lower torque limit (p1521 >0) can result in the motor accelerating in an uncontrollable fashion.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	The torque limit is limited to 400% of the rated motor torque. When automatically calculating the motor/closed-loop control parameters (p0340), the torque limit is set to match the current limit (p0640).		
p1522[0...n]	CI: Torque limit upper / M_max upper		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2003	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting $1520[0]$
Description:	Sets the signal source for the upper torque limit.		
Dependency:	Refer to: p1520, p1521, p1523		
Danger:	Negative values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		

p1523[0...n]	CI: Torque limit lower / M_max lower		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2003	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 1521[0]
Description:	Sets the signal source for the lower torque limit.		
Dependency:	Refer to: p1520, p1521, p1522		
	Positive values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
p1524[0...n]	CO: Torque limit upper/motoring scaling / M_max up/mot scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & -2000.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 2000.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description: Dependency:	Sets the scaling for the upper torque limit or the torque limit when motoring. p1400.4 = 0: upper/lower p1400.4 = 1: motoring / regenerating		
Notice: Note:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. This parameter can be freely interconnected.		
p1525[0...n]	CO: Torque limit lower scaling / M_max lower scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & -2000.0[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 2000.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description:	Sets the scaling for the lower torque limit.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	This parameter can be freely interconnected.		
r1526	CO: Torque limit upper without offset / M_max up w/o offs		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Data set: -
	Units group: 7_1	Unit selection: p050	
	Min - [Nm]	Max - [Nm]	Factory setting - [Nm]
Description: Dependency:	Displays the upper torque limit of all torque limits without offset.		

r1527	CO: Torque limit lower without offset / M_max low w/o offs		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Data set: -
	Units group: 7_1	Unit selection: p0505	
	Min - [Nm]	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{Nm}] \end{aligned}$	Factory setting - [Nm]
Description:	Displays the lower torque limit of all torque limits without offset.		
Dependency:			
p1528[0...n]	Cl : Torque limit upper scaling / M_max upper scal		
	Access level: 4	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting $1524[0]$
Description:	Sets the signal source for the scaling of the upper torque limit in p1522.		
Danger:	For p1400.4 $=0$ (torque limiting, upper/lower) the following applies:		
	Negative values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1529[0...n]	CI: Torque limit lower scaling / M_max lower scal		
	Access level: 4	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 1525[0]
Description:	Sets the signal source for the scaling of the lower torque limit in p1523.		
Danger:	For p1400.4 $=0$ (torque limiting, upper/lower) the following applies:		
	Positive values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1530[0...n]	Power limit motoring / P_max mot		
	Access level: 2	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: 14_5	Unit selection: p0505	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~kW}] \end{aligned}$	Max 100000.00 [kW]	Factory setting 0.00 [kW]
Description:	Sets the power limit when motoring.		
Dependency:	Refer to: p0500, p1531		
Note:	The power limit is limited to 300% of the rated motor power.		

r1539	CO: Lower effective torque limit / M_max lower eff		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Data set: -
	Units group: 7_1	Unit selection: p0505	
	Min - [Nm]	Max - [Nm]	Factory setting - [Nm]
Description:	Displays the currently effective lower torque limit.		
Note:	The effective lower to p0640 is reduced or the This may be the case The torque limit p1520	uced with respect to the s tizing current of the induc asurements (see p1960). ulated using p0340 $=1,3$	torque limit p1521, if the current limit 320 is increased.
r1547[0...1]	CO: Torque limit for speed controller output / M_max outp n_ctrl		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Data set: -
	Units group: 7_1	Unit selection: p0505	
	Min - [Nm]	Max $-[\mathrm{Nm}]$	Factory setting - [Nm]
Description:	Displays the torque limit to limit the speed controller output.		
Index:	$\begin{aligned} & {[0]=\text { Upper limit }} \\ & {[1]=\text { Lower limit }} \end{aligned}$		
r1548[0...1]	CO: Stall current limit torque-generating maximum / Isq_max stall		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Data set: -
	Units group: 6_2	Unit selection: p0505	
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the limit for the torque-generating current component using the stall calculation, the current limit of the power unit as well as the parameterization in p0640.		
Index:	$\begin{aligned} & {[0]=\text { Upper limit }} \\ & {[1]=\text { Lower limit }} \end{aligned}$		
p1552[0...n]	CI: Torque limit upper scaling without offset / M_max up w/o offs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 1
Description:	Sets the signal source for the scaling of the upper torque limiting to limit the speed controller output without taking into account the current and power limits.		
p1554[0...n]	CI: Torque limit lower scaling without offset / M_max low w/o offs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 1
Description:	Sets the signal source for the scaling of the lower torque limiting to limit the speed controller output without taking into account the current and power limits.		

p1570[0...n]	CO: Flux setpoint / Flux setpoint		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 50.0[\%] \end{aligned}$	Max 200.0 [\%]	Factory setting 100.0 [\%]
Description:	Sets the flux setpoint referred to rated motor flux.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	For p1570 $>100 \%$, the flux setpoint increases as a function of the load from 100% (no-load operation) to the setting in p1570 (above rated motor torque), if p1580 > 0\% has been set.		
p1571[0...n]	CI: Supplementary flux setpoint / Suppl flux setp		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2003	Data set: CDS, p0170
	Units group: -	Unit selection: -	
		Max	Factory setting 0
Description:	Sets the signal source for the supplementary flux setpoint.		
Notice:	Low flux setpoints can cause the drive to stall at higher loads. This is the reason that the flux setpoint should only be adapted for slow load changes.		
Note:	The supplementary flux setpoint is limited to +/-50\%.		
p1573[0...n]	Flux threshold value magnetizing / Flux thresh magnet		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min}_{10.0}^{[\%]} \end{aligned}$	$\begin{aligned} & \operatorname{Max}_{200.0}[\%] \end{aligned}$	Factory setting 100.0 [\%]
Description:	Sets the flux threshold value for enabling the speed setpoint and the end of magnetizing (r0056.4).		
Note:	The parameter only has an influence if the flux actual value reaches the threshold value p1573 more quickly during magnetizing than the time set in p0346.		
	The parameter has no influence for flying restart (see p1200) and after DC braking (see p1231).		
p1574[0...n]	Voltage reserve dynamic / U_reserve dyn		
PM230	Access level: 3	Calculated: p0340 $=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: 5_1	Unit selection: p0505	
	Min 0.0 [Vrms]	Max 150.0 [Vrms]	Factory setting 2.0 [Vrms]
Description:	Sets a dynamic voltage reserve.		
Dependency:	Refer to: p0500		
Note:	In the field weakening range, it must be expected that the control dynamic performance is somewhat restricted due to the limited possibilities of controlling/adjusting the voltage. This can be improved by increasing the voltage reserve. Increasing the reserve reduces the steady-state maximum output voltage (r0071).		

p1580[0...n]	Efficiency optimization / Efficiency opt.		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min $0 \text { [\%] }$	Max $100 \text { [\%] }$	Factory setting 80 [\%]
Description:	Sets the efficiency optimization. When optimizing the efficiency, the flux setpoint of the closed-loop control is adapted as a function of the load.		
Note:	It only makes sense to activate this function if the dynamic response requirements of the speed controller are low. In order to avoid oscillations, if required, the speed controller parameters should be adapted (increase Tn, reduce Kp). Further, the smoothing time of the flux setpoint filter (p1582) should be increased.		
p1580[0...n]	Efficiency optimization / Efficiency opt.		
PM240	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM250, PM260	Can be changed: \cup, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 0 [\%]	$\begin{aligned} & \operatorname{Max} \\ & 100 \text { [\%] } \end{aligned}$	Factory setting 0 [\%]
Description:	Sets the efficiency optimization. When optimizing the efficiency, the flux setpoint of the closed-loop control is adapted as a function of the load.		
Note:	It only makes sense to activate this function if the dynamic response requirements of the speed controller are low. In order to avoid oscillations, if required, the speed controller parameters should be adapted (increase Tn, reduce Kp).		
p1582[0...n]	Flux setpoint smoothing time / Flux setp T_smth		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 4 [ms]	$\begin{aligned} & \operatorname{Max} \\ & 5000 \text { [ms] } \end{aligned}$	Factory setting 15 [ms]
Description:	Sets the smoothing time for the flux setpoint.		

r1583	Flux setpoint smoothed / Flux setp smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the smoothed flux setpoint.		
p1584[0...n]	Field weakening operation, flux setpoint smoothing time / Field weak T_smth		
	Access level: 4	Calculated: p0340 = 1,3	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 0 [ms]	Max 20000 [ms]	Factory setting 0 [ms]
Description: Note:	Sets the smoothing time for the flux setpoint in the field-weakening range		
r1589	Field-weakening current, pre-control value / I_FieldWeak prectr		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Data set: -
	Units group: 6_2	Unit selection: p0505	
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the pre-control value for the field weakening current.		
r1593[0...1]	CO: Field weakening controller / flux controller output / Field/FI_ctrl outp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Data set: -
	Units group: 6_2	Unit selection: p0505	
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description: Index:	Displays the output of the field weakening controller (synchronous motor). [0] = PI output [1] = I output		
p1594[0...n]	Field-weakening controller, P gain / Field_ctrl Kp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00 \end{aligned}$	Factory setting 0.00
Description:	Sets the P gain of the field-weakening controller.		

p1596[0...n]	Field weakening controller integral-action time / Field_ctrl Tn		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 10 [ms]	Max 10000 [ms]	Factory setting 300 [ms]
Description:	Sets the integral-action time of the field-weakening controller.		
r1597	CO: Field weakening controller output / Field_ctrl outp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & -[\%] \end{aligned}$	Max - [\%]	Factory setting - [\%]
Description:	Displays the output of the field weakening controller. The value is referred to the rated motor flux.		
r1598	CO: Total flux setpoint / Flux setp total		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	$\underset{-[\%]}{\operatorname{Min}_{1}}$	$\begin{gathered} \operatorname{Max} \\ -[\%] \end{gathered}$	Factory setting - [\%]
Description:	Displays the effective flux setpoint.		
p1610[0...n]	Torque setpoint static (SLVC) / M_set static		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -		
	$\operatorname{Min}_{-200.0}[\%]$	$\begin{aligned} & \operatorname{Max} \\ & 200.0 \text { [\%] } \end{aligned}$	Factory setting 50.0 [\%]
Description:	Sets the static torque setpoint for sensorless vector control (SLVC).		
	This parameter is entered as a percentage referred to the rated motor torque (r0333).		
	For sensorless vector control, when the motor model is shut down, an absolute current is impressed. p1610 represents the maximum load that occurs at a constant setpoint speed.		
Notice:	p1610 should always be	st 10% higher than the maxim	dy-state load that can occur.
	For p1610 $=0 \%$, a current setpoint is calculated that corresponds to the no-load case (ASM: rated magnetizing current).		
	Negative values are converted into positive setpoints in the case of induction and permanent-magnet synchronous motors.		

p1611[0...n]	Supplementary accelerating torque (SLVC) / M_suppl_accel		
	Access level: 2	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\operatorname{Min}_{0.0}$	$\begin{aligned} & \operatorname{Max} \\ & 200.0 \text { [\%] } \end{aligned}$	Factory setting 30.0 [\%]
Description:	Enters the dynamic torque setpoint for the low-speed range for sensorless vector control (SLVC). This parameter is entered as a percentage referred to the rated motor torque (r0333).		
Note:	When accelerating and braking p1611 is added to p1610 and the resulting total torque is converted into an appropriate current setpoint and controlled. For pure accelerating torques, it is always favorable to use the torque pre-control of the speed controller (p1496).		
p1616[0...n]	Current setpoint smoothing time I I_set T_smooth		
	Access level: 4	Calculated: $\mathrm{p} 0340=1,3$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\underset{4[\mathrm{~ms}]}{\mathrm{Min}^{2}}$	Max 10000 [ms]	Factory setting 40 [ms]
Description:	Sets the smoothing time for the current setpoint.		
	The current setpoint is generated from p1610 and p1611.		
Note:	This parameter is only effective in the range where current is injected for sensorless vector control.		
r1623[0...1]	Field-generating current setpoint (steady-state) / Id_set stationary		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Data set: -
	Units group: 6_2	Unit selection: p0505	
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the steady-state field generating current setpoint (Id_set).		
Note:			
	Displays the stationary field-generating current on the stator side in the case of separately excited synchronous motors without the excitation current monitoring component (r1644).		
r1624	Field-generating current setpoint, total / Id_setp total		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Data set: -
	Units group: 6_2	Unit selection: p0505	
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the limited field-generating current setpoint (Id_set). This value comprises the steady-state field-generating current setpoint r1623 and a dynamic component that is only set when changes are made to the flux setpoint.		

r1650

r1718	CO: Isq controller output / Isq_ctrl outp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Data set: -
	Units group: 5_1	Unit selection: p0505	
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the actual output of the Isq current controller (torque/force generating current, PI controller). The value contains the proportional and integral components of the PI controller.		
$\mathbf{r 1 7 1 9}$	Isq controller integral component / Isq_ctrl I_comp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Data set: -
	Units group: 5_1	Unit selection: p0505	
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the integral component of the Isq current controller (torque/force-generating current, PI controller).		
r1723	CO: Isd controller output / Isd_ctrl outp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Data set: -
	Units group: 5_1	Unit selection: p0505	
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the actual output of the Isd current controller (flux-generating current, PI controller). The value contains the proportional and integral components of the PI controller.		
r1724	Isd controller integral component / Isd_ctrl I_comp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Data set: -
	Units group: 5_1	Unit selection: p0505	
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the integral component of the Isd current controller (flux-generating current, PI controller).		
r1725	Isd controller integral component limit / Isd_ctrl I_limit		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Data set: -
	Units group: 5_1	Unit selection: p0505	
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the limit value for the integral component of the Isd current controller.		

p1726[0...n]	Quadrature arm decoupling, scaling / Transv_decpl scal		
	Access level: 4	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\operatorname{Min}_{0.0}$	Max 200.0 [\%]	Factory setting 75.0 [\%]
Description:	Sets the scaling of the quadrature arm decoupling		
Note:	This parameter is ineffective for sensorless vector control. In this case, p1727 is always used. If p1726 is set to 0, then the quadrature de-coupling is de-activated. The integral component of the Isd current controller remains effective in the complete speed control range.		
	For the closed-loop control of synchronous motors, this parameter is used to scale the current controller de-coupling.		
p1727[0...n]	Quadrature arm decoupling at voltage limit scaling / TrnsvDecpIVmaxScal		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\operatorname{Min}_{0.0}$	$\begin{aligned} & \operatorname{Max} \\ & 200.0 \text { [\%] } \end{aligned}$	Factory setting 50.0 [\%]
Description:	Sets the scaling of quadrature arm decoupling when the voltage limit is reached.		
r1728	De-coupling voltage, in-line axis / U_dir-axis_decoupl		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Data set: -
	Units group: 5_1	Unit selection: p0505	
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the actual output of the quadrature channel de-coupling for the d axis.		
r1729	De-coupling voltage, quadrature axis I U_quad_decoupl		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Data set: -
	Units group: 5_1	Unit selection: p0505	
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the actual output of the quadrature channel de-coupling for the q axis.		
p1730[0...n]	Isd controller integral component shutdown threshold / Isd_ctrl I_thresh		
	Access level: 4	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min_{30}	$\begin{aligned} & \max _{150} \\ & \text { [\%] } \end{aligned}$	Factory setting 30 [\%]
Description:	Sets the speed activation threshold (referred to the synchronous speed r0336 / r0313) for pure quadrature branch operation of the closed-loop current control.		
	The d current controller is only effective as P controller for speeds greater than the threshold value.		
Warning:	For settings above 80%, the d current controller is active up to the field weakening limit (maximum voltage)		
	This can result in unstable behavior as the closed-loop control at the maximum voltage is based on pure quadrature branch operation. Setting values as high as this should not be selected; they are only intended for test purposes.		

r1732[0...1]	CO: Direct-axis voltage setpoint / Direct U set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Data set: -
	Units group: 5_1	Unit selection: p0505	
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description: Index:	Displays the direct-axis voltage setpoint Ud. [0] = Unsmoothed		[0] = Unsmoothed [1] = Smoothed with p0045
r1733[0...1]	CO: Quadrature-axis voltage setpoint / Quad U set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Data set: -
	Units group: 5_1	Unit selection: p0505	
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description: Index:	Displays the quadrature-axis component of voltage setpoint Uq.		[0] = Unsmoothed [1] = Smoothed with p0045
p1740[0...n]	Gain resonance damping for encoderless closed-loop control / Gain res_damp		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: \cup, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 10.00 \end{aligned}$	$\begin{aligned} & \text { Factory setting } \\ & 0.025 \end{aligned}$
Description:	Defines the gain of the controller for resonance damping for operation with sensorless vector control in the range that current is injected.		
p1745[0...n]	Motor model error threshold stall detection / MotMod ThreshStall		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.0[\%] \end{aligned}$	Max $1000.0 \text { [\%] }$	Factory setting 5.0 [\%]
Description:	Sets the fault threshold in order to detect a motor that has stalled. If the error signal (r1746) exceeds the parameterized error threshold, then status signal r1408.12 is set to 1 .		
Dependency:	If a stalled drive is detected (r1408.12 = 1), fault F07902 is output after the delay time set in p2178. Refer to: p2178		
Note:	Monitoring is only effective in the low-speed range (below p1755 * (100\% - p1756)).		
r1746	Motor model error signal stall detection / MotMod sig stall		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{gathered} \operatorname{Min} \\ -[\%] \end{gathered}$	$\begin{gathered} \operatorname{Max} \\ -[\%] \end{gathered}$	Factory setting - [\%]
Description:	Signal to initiate stall detection		
Note:	The signal is not calculated while magnetizing and only in the low speed range (below p1755 * (100 \% - p1756)).		

p1750[0...n]	Motor model configuration / MotMod config		
PM230	Access level: 3 Calculated: p0340 = 1,3,5	Data type: Unsigned8	
	Can be changed: U, T Scaling: -	Data set: DDS, p0180	
	Units group: - Unit selection: -		
	Min Max	Factory setting 00001100 bin	
	- -		
Description:	Sets the configuration for the motor model.		
	Bit $0=1$: Forces open-loop speed-controlled starting (ASM).		
	Bit 1 = 1: Forces the system to pass through frequency zero, open-loop-controlled (ASM).		
	Bit 2 = 1: Drive remains in full closed-loop control mode, even at zero frequency (ASM).		
	Bit 3 = 1: Motor model evaluates the saturation characteristic (ASM).		
	Bit $6=1$: If the motor is blocked, sensorless vector control remains speed-controlled (ASM).		
Bit field:	Bit Signal name 1 signal	0 signal	FP
	00 Controlled start Yes	No	-
	01 Controlled through 0 Hz Yes	No	-
	02 Closed-loop ctrl oper. down to zero freq. for Yes passive loads	No	-
	03 Motor model Lh_pre = f(PsiEst) Yes	No	-
	06 Closed-loop control when motor is blocked Yes	No	-
Dependency:	Refer to: p0500		
	Do not use bit $6=1$ if the motor can be reversed by the load. Long delay times due to blocking (p2177) can cause the motor to stall. In this case you should de-activate the function or use closed-loop control throughout the speed range (note the information re bit $2=1$).		
Note:	Bits $0 \ldots 2$ only have an influence for encoderless vector control, bit 2 is pre-assigned depending on p0500. Re bit 2 = 1 :		
	The sensorless vector control is effective down to zero frequency. A change is not made into the open-loop speed controlled mode.		
	This operating mode is possible for passive loads. These include applications where the load itself does not generate any active torque and therefore only acts reactively to the drive torque of the induction motor.		
	If bit $2=1$, then bit 3 is automatically set to 1 . Manual de-selection is possible and may be sensible if the saturation characteristic (p1960) was not measured for third-party motors. Generally, for standard SIEMENS motors, the already pre-assigned (default value) saturation characteristic is adequate.		
	When the bit is set, the selection of bits 0 and 1 is ignored.		
	Re bit $2=0$:		
	Bit 3 is also automatically deactivated.		
	Re bit $6=1$:		
	The following applies for encoderless vector control of induction motors:		
	For a blocked motor (see p2175, p2177) the time condition in p1758 is bypassed and a change is not made into open-loop controlled operation.		

p1750[0...n]	Motor model configuration / MotMod config		
PM240	Access level: 3 Calculated: p0340 = 1,3,5	Data type: Unsigned8	
PM250, PM260	Can be changed: U, T Scaling: -	Data set: DDS, p0180	
	Units group: - Unit selection: -	Unit selection: -	
	Min Max	Factory setting 00000000 bin	
Description:	Sets the configuration for the motor model.		
	Bit $0=1$: Forces open-loop speed-controlled starting (ASM).		
	Bit 1 = 1: Forces the system to pass through frequency zero, open-loop-controlled (ASM).		
	Bit 2 = 1: Drive remains in full closed-loop control mode, even at zero frequency (ASM).		
	Bit 3 = 1: Motor model evaluates the saturation characteristic (ASM).		
	Bit $6=1$: If the motor is blocked, sensorless vector control remains speed-controlled (ASM).		
Bit field:	Bit Signal name 1 signal	0 signal	FP
	00 Controlled start Yes	No	-
	01 Controlled through 0 Hz Yes	No	-
	02 Closed-loop ctrl oper. down to zero freq. for Yes passive loads	No	-
	03 Motor model Lh_pre = f(PsiEst) Yes	No	-
	06 Closed-loop control when motor is blocked Yes	No	-
Dependency:	Refer to: p0500		
Caution:	Do not use bit $6=1$ if the motor can be reversed by the load. Long delay times due to blocking (p2177) can cause the motor to stall. In this case you should de-activate the function or use closed-loop control throughout the speed range (note the information re bit $2=1$).		
Note:	Bits $0 . . .2$ only have an influence for encoderless vector control, bit 2 is pre-assigned depending on p0500. Re bit 2 = 1 :		
	The sensorless vector control is effective down to zero frequency. A change is not made into the open-loop speed controlled mode.		
	This operating mode is possible for passive loads. These include applications where the load itself does not generate any active torque and therefore only acts reactively to the drive torque of the induction motor.		
	If bit $2=1$, then bit 3 is automatically set to 1 . Manual de-selection is possible and may be sensible if the saturation characteristic (p1960) was not measured for third-party motors. Generally, for standard SIEMENS motors, the already pre-assigned (default value) saturation characteristic is adequate.		
	When the bit is set, the selection of bits 0 and 1 is ignored.		
	Re bit $2=0$:		
	Bit 3 is also automatically deactivated.		
	Re bit $6=1$:		
	The following applies for encoderless vector control of induction motors:		
	For a blocked motor (see p2175, p2177) the time condition in p1758 is bypassed and a change is not made into open-loop controlled operation.		

p1764[0...n]	Motor model without encoder speed adaptation Kp / MotMod woE n_adaKp		
	Access level: 4	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0.000 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100000.000 \end{aligned}$	Factory setting 1000.000
Description:	Sets the proportional gain of the controller for speed adaptation without encoder.		
r1765	Motor model, speed adaptation Kp effective / MotM n_ada Kp act		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	-	
Description:	Displays the effective proportional gain of the controller for the speed adaptation.		
p1767[0...n]	Motor model without encoder speed adaptation Tn / MotMod woE n_adaTn		
	Access level: 4	Calculated: $00340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 1 [ms]	$\begin{aligned} & \operatorname{Max} \\ & 200 \text { [ms] } \end{aligned}$	Factory setting 4 [ms]
Description:	Sets the integral time of the controller for speed adaptation without encoder		
r1768	Motor model, speed adaptation Vi effective / MotM n_ada Vi act		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Displays the effective gain of the integral component of the controller for speed adaptation.		
r1770	CO: Motor model speed adaptation proportional component / MotMod n_adapt Kp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection: p0505	
	Min - [rpm]	Max - [rpm]	Factory setting - [rpm]
Description:	Displays the P component of the controller for speed adaptation.		
r1771	CO: Motor model speed adaptation I comp. / MotMod n_adapt Tn		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection: p0505	
	Min - [rpm]	Max - [rpm]	Factory setting - [rpm]
Description:	Displays the I component of the controller for speed adaptation.		

p1786[0...n]	Motor model Lh adaptation integral time / MotMod Lh Tn		
	Access level: 4	Calculated: p0340 $=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 10 [ms]	Max 10000 [ms]	Factory setting 100 [ms]
Description:	Sets the integral time for the Lh adaptation of the motor model for an induction motor (ASM).		
r1787[0...n]	Motor model Lh adaptation corrective value / MotMod Lh corr		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min - [mH]	Max - [mH]	Factory setting - [mH]
Description: Dependency:	Displays the corrective value for the Lh adaptation of the motor model for an induction motor (ASM). Refer to: p0826, p1780		
Note:	The adaptation result is reset if the magnetizing inductance of the induction motor is changed ($\mathrm{p} 0360, \mathrm{r} 0382$). This also happens when changing over the data set if a different motor is not being used (p0826).		
	The display of the inactive data sets is only updated when changing over the data set.		
r1791	Motor model Lh adaptation power-on frequency / MotMod Lh f_on		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\operatorname{Min}_{-[\mathrm{Hz}]}$	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{Hz}] \end{aligned}$	Factory setting - [Hz]
Description:	Displays the power-on s (ASM).	cy/ primary section frequency	h adaptation for the induction motor
r1792	Motor model Lh adaptation power-on slip / MotMod Lh fslip		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed:	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\operatorname{Min}_{-[\mathrm{Hz}]}$	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{Hz}] \end{aligned}$	Factory setting - [Hz]
Description:	Displays the power-on slip frequency for the Lh adaptation for the induction motor (ASM).		
p1795[0...n]	Motor model kT adaptation integral time / MotMod kT Tn		
	Access level: 4	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 10 [ms]	Max 10000 [ms]	Factory setting 100 [ms]
Description:	Sets the integral time of the kT adaptation of the motor model for a permanent-magnet synchronous motor (PEM).		

r1797[0...n]	Motor model kT adaptation corrective value / MotMod kT corr		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min - [Nm/A]	Max - [Nm/A]	Factory setting - [Nm/A]
Description:	Displays the corrective value of the kT adaptation of the motor model for a permanent-magnet synchronous motor (PEM).		
Dependency:	Refer to: p0826, p1780		
Note:	The display of the inactive data sets is only updated when changing over the data set.		
p1800[0...n]	Pulse frequency setpoint / Pulse freq setp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	2.000 [kHz]	16.000 [kHz]	4.000 [kHz]
Description:	Sets the pulse frequency for the converter.		
	This parameter is pre-set to the rated converter value when the drive is first commissioned.		
Dependency:	Refer to: p0230		
Note:	The maximum possible pulse frequency is also determined by the power unit being used.		
	When the pulse frequency is increased, depending on the particular power unit, the maximum output current can be reduced (derating, refer to r0067).		
	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3$), then the pulse frequency cannot be set below the minimum value required for the filter.		
	For operation with output reactors, the pulse frequency is limited to 4 kHz (see p0230).		
	If p 1800 is changed during commissioning ($\mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p1800 have been changed by a parameter that was set when the drive was commissioned (e.g. p1082).		
r1801[0...1]	CO: Pulse frequency / Pulse frequency		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: -	Unit selection: -	
	Min - [kHz]	Max - [kHz]	Factory setting - [kHz]
Description:	Display and connector output for the actual converter switching frequency.		
Index:	[0] = Actual		
Note:	The selected pulse frequency (p1800) may be reduced if the drive converter has an overload condition (p0290).		

p1802[0...n]	Modulator mode / Modulator mode		
PM240	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	0	10	0
Description:	Sets the modulator mode.		
Value:	0: Automatic changeover SVM/FLB		
	2: Space vector modulation (SVM)		
	3: SVM without overcontrol		
	4: SVM/FLB without overcontrol		
	10: SVM/FLB with modulation depth reduction		
Dependency:	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3,4$), then only space vector modulation without overcontrol can be selected as modulation type ($\mathrm{p} 1802=3$). This is not valid for the power units PM260. p1802 = 10 can only be set for the PM230 and PM240 power units.		
	Refer to: p0230, p0500		
Note:	When modulation modes are enabled that could lead to overmodulation (p1802 $=0,2,10$), the modulation depth must be limited using p1803 (default p1803 < 100%). The higher the overmodulation, the greater the current ripple and torque ripple.		
	When changing p1802[x], the values for all of the other existing indices are also changed.		

p1802[0...n]	Modulator mode $/$ Modulator mode		
PM250	Calculated: p0340 $=1,3,5$	Data type: Integer16	
PM260	Access level: 3	Scaling: -	Data set: DDS, pO180

p1820[0...n]	Reverse the output phase sequence / Outp_ph_seq rev		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(2)$, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	If the motor does not rotate in the required direction, then the output phase sequence can be reversed using this parameter. This means that the direction of the motor is reversed without the setpoint being changed.		
Value:	0: OFF		
Note:	This setting can only be changed when the pulses are inhibited.		
p1825	Converter valve threshold voltage / Threshold voltage		
	Access level: 4	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.0 \text { [Vrms] } \end{aligned}$	Max 100.0 [Vrms]	Factory setting 0.6 [Vrms]
Description: Note:	Sets the threshold voltage drop of the valves (power semiconductor devices) to be compensated.		
p1828	Compensation valve lockout time phase U / Comp t_lock ph U		
	Access level: 4	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mu \mathrm{~s}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 3.99[\mu \mathrm{~s}] \end{aligned}$	Factory setting 0.00 [$\mu \mathrm{s}$]
Description:	Sets the valve lockout time to compensate for phase U.		
Note:	The value is automatically calculated in the motor data identification routine.		
p1829	Compensation valve lockout time phase V / Comp t_lock ph V		
	Access level: 4	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mu \mathrm{~s}] \end{aligned}$	Max 3.99 [$\mu \mathrm{s}$]	Factory setting 0.00 [$\mu \mathrm{s}$]
Description:	Sets the valve lockout time to compensate for phase V .		
11830	Compensation valve lockout time phase W / Comp t_lock ph W		
	Access level: 4	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min $0.00[\mu \mathrm{~s}]$	Max $3.99[\mu \mathrm{~s}]$	Factory setting 0.00 [$\mu \mathrm{s}$]
Description:	Sets the valve lockout time to compensate for phase W.		

p1901	Test pulse evaluation configuration / Test puls config			
	Access level: 4	Calculated: -	Data type:	
	Can be changed: T Sc	Scaling: -	Data set: -	
	Units group: - Un	Unit selection: -		
	Min Ma		Factory se 0000 bin	
Description:	Sets the configuration for the test pulse e Re bit 00: Check for conductor-to-conductor short	evaluation. circuit when pulse is		
Bit field:	Bit Signal name 00 Phase short-circuit test pulse active	$\begin{array}{ll} & 1 \text { signal } \\ \text { ive } & \text { Yes } \end{array}$	0 signal No	FP
Note:	Re bit 00: If the test was successful once after POW If a conductor-to-conductor short-circuit	OWER ON (see r1902. is detected during the	eated. splayed in r1	
r1902	Test pulse evaluation status / Test puls ev stat			
	Access level: 4 Ca	Calculated: -	Data type:	
	Can be changed: - Sc	Scaling: -	Data set: -	
	Units group: - Un	Unit selection: -		
	Min Ma	Max	Factory se	
Description:	Bit 0: The short-circuit test was run without any faults detected. Bit 1: A phase short circuit has been detected.			
Bit field:	Bit Signal name 00 Short-circuit test executed 01 Phase short-circuit detected	$\begin{aligned} & 1 \text { signal } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \text { signal } \\ & \text { No } \\ & \text { No } \end{aligned}$	FP

p1909[0...n]	Motor data identification control word / MotID STW				
	Access level: 3		Calculated: p0340 = 1	Data type: Unsigned16	
	Can be changed: T		Scaling: -	Data set: MDS	
	Units group: -		Unit selection: -		
	Min		Max	Factory setting 0000000000000000 bin	
	-	-			
Description:	Sets the configuration for the motor data identification.				
Bit field:		Signal name	1 signal	0 signal	FP
		Stator inductance estimate no measurement	Yes	No	-
	02	Rotor time constant estimate no measurement	Yes	No	-
	03	Leakage inductance estimate no measurement	Yes	No	-
	05	Determine Tr and Lsig evaluation in the time range	Yes	No	-
		Activate vibration damping	Yes	No	-
	07	De-activate vibration detection	Yes	No	-
		De-activate pulse measurement Lq Ld	Yes	No	-
	12	De-activate rotor resistance Rr measurement	Yes	No	-
		De-activate valve interlocking time measurement	Yes	No	-
		Determine only stator resistance, valve volt- Yes age fault, dead time		No	-
Note:	The following applies to permanent-magnet synchronous motors:				
	Without de-selection in bit 11, in the closed-loop control mode, the direct inductance LD and the quadrature inductance Lq are measured at a low current.				
	When de-selecting with bit 11 or in the U/f mode, the stator inductance is measured at half the rated motor current. If the stator is inductance is not measured but is to be estimated, then bit 0 should be set and bit 11 should be deselected.				

r1912[0...2]	Identified stator resistance / R_stator ident		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection	
	Min - [ohm]	Max - [ohm]	Factory setting - [ohm]
Description: Index:	Displays the identifi [0] = Phase U [1] = Phase V [2] = Phase W		
r1913[0...2]	Identified rotor time constant / T_rotor ident		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection	
	Min - [ms]	Max - [ms]	Factory setting - [ms]
Description: Index:	Displays the identifi [0] = Phase U [1] = Phase V [2] = Phase W	tant.	
r1914[0...2]	Identified total leakage inductance / L_total_leak ident		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection	
	Min - [mH]	Max - [mH]	Factory setting - [mH]
Description: Index:	Displays the identifi [0] = Phase U [1] = Phase V [2] = Phase W	Inductance.	
r1915[0...2]	Identified nominal stator inductance / L_stator ident		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection	
	Min - [mH]	Max $-[\mathrm{mH}]$	Factory setting - [mH]
Description: Index:	Displays the nomina $[0]$ = Phase U [1] = Phase V [2] = Phase W	e identified.	

p1960	Rotating measurement selection / Rot meas sel		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	${\underset{3}{\operatorname{Max}}}^{2}$	Factory setting 0
Description:	Sets the rotating measurement.		
	The rotating measurement is carried out after the next power-on command.		
	The setting possibilities of the parameter depend on the open-loop/closed-loop control mode (p1300). p1300 < 20 (U/f open-loop control):		
	It is not possible to select rotating measurement or speed controller optimization.		
	p1300 = 20, 22 (encoderless operation):		
	Only rotating measurement or speed controller optimization can be selected in the encoderless mode.		
Value:	0 : Inhibited		
	1: Rotating measurement in encoderless operation		
	3: Speed controller optimization in encoderless operation		
Dependency:	Before the rotating measurement is carried out, the motor data identification routine ($\mathrm{p} 1900, \mathrm{p} 1910, \mathrm{r} 3925$) should have already been done.		
	When selecting the rotating measurement, the drive data set changeover is suppressed.		
	Refer to: p1300, p1900, p1959		
	For drives with a mechanical system that limits the distance moved, it must be ensured that this is not reached during the rotating measurement. If this is not the case, then it is not permissible that the measurement is carried out.		
Notice:	If there is a motor holding brake, it must be open (p1215 = 2).		
	To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971).		
Note:	When the rotating measurement is activated, it is not possible to save the parameters (p0971).		
	Parameter changes are automatically made for the rotating measurement (e.g. p1120); this is the reason that up to the end of the measurement, and if no faults are present, no manual changes should be made.		
	The ramp-up and ramp-down times (p1120, p1121) are limited, for the rotating measurement, to 900 s .		
p1961	Saturation characteristic speed to determine / Sat_char \mathbf{n} determ		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	26 [\%]	75 [\%]	40 [\%]
Description:	Sets the speed to determine the saturation characteristic.		
	The percentage value is referred to p0310 (rated motor frequency).		
Dependency:	Refer to: p0310, p1959		
	Refer to: F07983		
Note:	The saturation characteristics should be determined at an operating point with the lowest possible load.		

p1965	Speed_ctrl_opt speed / n_opt speed		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min 10 [\%]	Max 75 [\%]	Factory setting 40 [\%]
Description:	Sets the speed for the id Induction motor: The percentage value is Synchronous motor: The percentage value is speed).	the moment of ine 310 (rated motor e minimum from p	equency) and p1082 (maximum
Dependency:	Refer to: p0310, p1959 Refer to: F07984, F0798		
Note:	In order to calculate the lower speed setpoint. Th p1959 bit 5) is determine Hz and at a minimum of	n speed changes reased by 20% for ed and at 50% of ted motor speed.	specified value corresponds to the lue. The q leakage inductance (refer to th a maximum output frequency of 15

r1968	Speed_ctrl_opt dynamic factor actual / n_opt dyn_fact act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection	
	Min - [\%]	$\begin{aligned} & \operatorname{Max} \\ & -[\%] \end{aligned}$	Factory setting - [\%]
Description:	Displays the dynamic factor which is actually achieved for the vibration test		
Dependency:	Refer to: p1959, p1967		
	Refer to: F07985		
Note:	This dynamic factor	control mode o	et in p1960.

p2000	Reference speed reference frequency / n_ref f_ref
	Access level: $2 \quad$ Calculated: $\mathrm{p} 0340=1 \quad$ Data type: FloatingPoint32
	Can be changed: T Scaling: - Data set:
	Units group: - Unit selection: -
	Min Max Factory setting $6.00[\mathrm{rpm}]$ $210000.00[\mathrm{rpm}]$ $1500.00[\mathrm{rpm}]$
Description:	Sets the reference quantity for speed and frequency. All speeds or frequencies specified as relative value are referred to this reference quantity. The reference quantity in this parameter corresponds to 100% or 4000 hex or 40000000 hex. The following applies: Reference frequency (in Hz) = reference speed (in ((rpm)/60) x pole pair number).
Dependency:	This parameter is only updated during the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) if motor commissioning was carried out beforehand for drive data set zero. This means that the parameter is not locked against overwriting using p0573 $=1$. Refer to: p2001, p2002, p2003, r2004, r3996
Notice: Note:	When the reference speed / reference frequency is changed, short-term communication interruptions may occur. If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor. Example 1: The signal of an analog input (e.g. r0755[0]) is connected to a speed setpoint (e.g. p1070[0]). The actual percentage input value is cyclically converted into the absolute speed setpoint using the reference speed (p2000). Example 2: The setpoint from PROFIBUS (r2050[1]) is connected to a speed setpoint (e.g. p1070[0]). The actual input value is cyclically converted into a percentage value via the pre-specified scaling 4000 hex. This percentage value is converted to the absolute speed setpoint via reference speed (p2000).
p2001	Reference voltage / Reference voltage
	Access level: $3 \quad$ Calculated: $\mathrm{p} 0340=1 \quad$ Data type: FloatingPoint32
	Can be changed: T Scaling: - Data set: -
	Units group: - Unit selection: -
	Min Max Factory setting $10[$ Vrms] $100000[$ Vrms] 1000 [Vrms]
Description:	Sets the reference quantity for voltages. All voltages specified as relative value are referred to this reference quantity. This also applies for direct voltage values (= rms value) like the DC-link voltage.
Dependency:	The reference quantity in this parameter corresponds to 100% or 4000 hex or 40000000 hex. p2001 is only updated during automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) if motor commissioning has been carried out first for drive data set zero and as a result overwriting of the parameter has not been blocked by setting p0573 = 1. Refer to: r3996
Notice:	When the reference voltage is changed, short-term communication interruptions may occur.
Note:	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor. For infeed units, the parameterized device supply voltage (p0210) is pre-assigned as the reference quantity. Example: The actual value of the DC link voltage (r0070) is connected to a test socket (e.g. p0771[0]). The actual voltage value is cyclically converted into a percentage of the reference voltage (p2001) and output according to the parameterized scaling.

p2007	Reference acceleration / a_ref		
	Access level: 4	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.01\left[\mathrm{rev} / \mathrm{s}^{2}\right] \end{aligned}$	Max $500000.00\left[\mathrm{rev} / \mathrm{s}^{2}\right]$	Factory setting $0.01\left[\mathrm{rev} / \mathrm{s}^{2}\right]$
Description:	Sets the reference quantity for acceleration rates.		
	All acceleration rates specified as relative value are referred to this reference quantity.		
	The reference quantity in this parameter corresponds to 100% or 4000 hex or 40000000 hex.		
Dependency:	This parameter is only updated during the automatic calculation ($\mathrm{p} 0340=1$, p3900 >0) if motor commissioning was carried out beforehand for drive data set zero. This means that the parameter is not locked against overwriting using p0573 = 1 .		
Note:	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.		
	The reference acceleration is calculated as follows:		
	p2007 = p2000 / 1 [s]		
p2010	Comm interface baud rate / Comm baud		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	4	12	12
Description:	Sets the baud rate for the commissioning interface (USS, RS232).		
Value:	4: 2400 baud		
	5: 4800 baud		
	6: 9600 baud		
	7: 19200 baud		
	8: 38400 baud		
	9: 57600 baud		
	10: 76800 baud		
	11: 93750 baud		
	12: 115200 baud		
Note:	Commissioning interface		
	The parameter is not influenced by setting the factory setting.		
p2011	Comm int address / Comm add		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 31 \end{aligned}$	Factory setting 2
Description:	Sets the address for the commissioning interface (USS, RS232).		
Note:	The parameter is not influenced by setting the factory setting.		

p2016[0...3]	CI: Comm IF USS PZD send word / Comm USS send word		
	Access level: 3	Calculated: -	Data type: U32 / Integer16
	Can be changed: U, T	Scaling: 4000H	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Index:	$\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \end{aligned}$		
r2019[0...7]	Comm int error statistics / Comm err		
	Access level: 4	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
		-	
Description: Index:	Displays the receive err [0] = Number of error-fre [1] = Number of rejected [2] = Number of framing [3] = Number of overrun [4] = Number of parity e [5] = Number of starting [6] = Number of checksu [7] = Number of length	missioning interface ors	
p2020	Field bus interface baud rate / Field bus baud		
CU240B-2	Access level: 2	Calculated: -	Data type: Integer16
CU240E-2	Can be changed: T	Scaling: -	Data set: -
CU240E-2 F	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 13 \end{aligned}$	Factory setting 8
Description:	Sets the baud rate for the field bus interface (RS485).		
Value:	$\begin{array}{ll}\text { 4: } & 2400 \text { baud } \\ 5: & 4800 \text { baud } \\ \text { 6: } & 9600 \text { baud } \\ 7: & 19200 \text { baud } \\ 8: & 38400 \text { baud } \\ \text { 9: } & 57600 \text { baud } \\ \text { 10: } & 76800 \text { baud } \\ 11: & 93750 \text { baud } \\ 12: & 115200 \text { baud } \\ \text { 13: } & 187500 \text { baud }\end{array}$		
Notice:	For p0014 = 1, the follo After the value has been r3996. Modifications can For p0014 = 0, the follow Before a changed setting this, set p0971 = 1 or p0	further parameter ain when r3996 $=0$ ermanently effective	e made and the status is shown in M to ROM data save is required. To do
Note:	Fieldbus SS: Fieldbus in Changes only become The parameter is not inf The parameter is set to When p2030 = 1 (USS) Min./max./factory setting: When p2030 = 2 (MOD Min./max./factory setting:	POWER ON. tting the factory se tting when the prot applies: wing applies:	

p2030	Field bus int protocol selection / Field bus protocol		
CU240B-2	Access level: 1	Calculated: -	Data type: Integer16
CU240E-2	Can be changed: T	Scaling: -	Data set: -
CU240E-2 F	Units group: -	Unit selectio	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$	Factory setting 0
Description:	Sets the communication protocol for the field bus interface.		
Value:	0: No protocol 1: USS 2: MODBUS		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		
Note:	Changes only becom The parameter is not	POWER ON. tting the factory	

r2050[0...7]	CO: PROFIBUS PZD receive word / PZD recv word		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: 4000H	Data set: -
	Units group: -	Unit selection: -	
	Min		Factory setting
	-	-	-
Description: Index:	Connector output to inte $[0]=$ PZD 1 $[1]=$ PZD 2 $[2]=$ PZD 3 $[3]=$ PZD 4 $[4]=$ PZD 5 $[5]=$ PZD 6 $[6]=$ PZD 7 $[7]=$ PZD 8	(setpoints) with word	from the fieldbus master.
p2051[0...7]	CI: PROFIdrive PZD send word / PZD send word		
CU240B-2	Access level: 3	Calculated: -	Data type: U32 / Integer16
CU240E-2	Can be changed: U, T	Scaling: 4000H	Data set: -
CU240E-2 F	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Index:	Selects the PZD (actual $[0]=$ PZD 1 $[1]=$ PZD 2 $[2]=$ PZD 3 $[3]=$ PZD 4 $[4]=$ PZD 5 $[5]=$ PZD 6 $[6]=$ PZD 7 $[7]=$ PZD 8	word format to be	master.
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p2051[0...7]	CI: PROFIdrive PZD send word / PZD send word		
CU240B-2 DP	Access level: 3	Calculated: -	Data type: U32 / Integer16
CU240E-2 DP	Can be changed: U, T	Scaling: 4000H	Data set: -
CU240E-2 DP F	Units group: -	Unit selection: -	
	Min	Max	Factory setting [0] 2089[0]
			[1] 63[0]
			[2...7] 0
Description: Index:	Selects the PZD (actual $\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \\ & {[4]=\text { PZD } 5} \\ & {[5]=\text { PZD } 6} \\ & {[6]=\text { PZD } 7} \\ & {[7]=\text { PZD } 8} \end{aligned}$	word format to be	master.
Notice:	The parameter may be pros	result of p0922 or	be changed.

r2053[0...7]	PROFIdrive diagnostics send PZD word / Diag send word				
	Acc	ess level: 3	Calculated: -	Data type: Unsigned16	
	Can	be changed: -	Scaling: -	Data set: -	
	Unit	s group: -	Unit selection: -		
	$\underline{M i n}$		Max	Factory setting	
Description: Index:	Displays the PZD (actual values) with word format sent to the fieldbus master.				
	[0] = PZD 1				
	[1] = PZD 2				
	[2] = PZD 3				
	[3] P PZD 4				
	[4] = PZD 5				
	[5] = PZD 6				
	[6] = PZD 7				
	[7] = PZD 8				
Bit field:		Signal name	1 signal	0 signal	FP
		Bit 0	ON	OFF	-
		Bit 1	ON	OFF	-
		Bit 2	ON	OFF	-
		Bit 3	ON	OFF	-
		Bit 4	ON	OFF	-
		Bit 5	ON	OFF	-
		Bit 6	ON	OFF	-
		Bit 7	ON	OFF	-
		Bit 8	ON	OFF	-
		Bit 9	ON	OFF	-
		Bit 10	ON	OFF	-
		Bit 11	ON	OFF	-
		Bit 12	ON	OFF	-
		Bit 13	ON	OFF	-
		Bit 14	ON	OFF	-
		Bit 15	ON	OFF	-
r2054	PROFIBUS status / PB status				
CU240B-2 DP	Access level: 3		Calculated: -	Data type: Integer16	
CU240E-2 DP	Can be changed: -		Scaling: -	Data set: -	
CU240E-2 DP F	Units group: -		Unit selection: -		
	Min0		$\begin{aligned} & \text { Max } \\ & 4 \end{aligned}$	Factory setting	
Description: Value:	Status display for the PROFIBUS interface.				
	0: OFF				
	1: No connection (search for baud rate)				
	2: Connection OK (baud rate found)				
	3: Cyclic connection with master (data exchange)				
	4: Cyclic data OK				
r2055[0...2]	PROFIBUS diagnostics standard / PB diag standard				
CU240B-2 DP	Access level: 3		Calculated: -	Data type: Unsigned16	
CU240E-2 DP	Can be changed: -		Scaling: -	Data set: -	
CU240E-2 DP F	Units group: -		Unit selection: -		
	Min			Factory setting	
Description:	Diagnostics display for the PROFIBUS interface.				
Index:	[1] = Master input total length bytes [2] = Master output total length bytes				

r2074[0...7]	PROFIdrive diagnostics bus address PZD receive / Diag addr recv		
CU240B-2 DP	Access level: 3	Calculated: -	Data type: Unsigned16
CU240E-2 DP	Can be changed: -	Scaling: -	Data set: -
CU240E-2 DP F	Units group: -	Unit selection	
	Min	Max	Factory setting
Description: Index:	Displays the PROFIBUS address of $\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \\ & {[4]=\text { PZD } 5} \\ & {[5]=\text { PZD } 6} \\ & {[6]=\text { PZD } 7} \\ & {[7]=\text { PZD } 8} \end{aligned}$	e sender from	(PZD) is received.
Note:	Value range: $0-125$: Bus address of the sender 255: Not assigned		

r2075[0...7]	PROFIdrive diagnostics telegram offset PZD receive / Diag offs recv		
CU240B-2 DP	Access level: 3	Calculated: -	Data type: Unsigned16
CU240E-2 DP	Can be changed: -	Scaling: -	Data set: -
CU240E-2 DP F	Units group: -	Unit selection	
	Min	Max	Factory setting
Description:	Displays the PZD byte offset in the PROFIdrive receive telegram (controller output).		
Index:	$[0]=$ PZD 1 $[1]=$ PZD 2 $[2]=$ PZD 3 $[3]=$ PZD 4 $[4]=$ PZD 5 $[5]=$ PZD 6 $[6]=$ PZD 7 $[7]=$ PZD 8		
Note:	Value range:		
	0-242: Byte offset		

r2076[0...7]	PROFldrive diagnostics telegram offset PZD send / Diag offs send		
CU240B-2 DP	Access level: 3	Calculated: -	Data type: Unsigned16
CU240E-2 DP	Can be changed: -	Scaling: -	Data set: -
CU240E-2 DP F	Units group: -	Unit selection: -	
	Min	Max	Factory setting

Description: Displays the PZD byte offset in the PROFIdrive send telegram (controller input).
Index:

Note:
$[0]=$ PZD 1
$[1]=$ PZD 2
$[2]=$ PZD 3
$[3]=$ PZD 4
$[4]=$ PZD 5
$[5]=$ PZD 6
$[6]=$ PZD 7
$[7]=$ PZD 8
Value range:
$0-242:$ Byte offset
$65535:$ not assigned

r2077[0...15]	PROFIBUS diagnostics peer-to-peer data transfer addresses / PB diag peer addr		
CU240B-2 DP	Access level: 3	Calculated: -	Data type: Unsigned8
CU240E-2 DP	Can be changed: -	Scaling: -	Data set: -
CU240E-2 DP F	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	-	-
Description:	Displays the addresses of the slaves (peers) where peer-to-peer data transfer has been configured via PROFIBUS.		

p2080[0...15]	BI: Binector-connector converter status word 1 / Bin/con ZSW1		
CU240B-2 DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU240E-2 DP	Can be changed: U, T	Scaling: -	Data set: -
CU240E-2 DP F	Units group: -	Unit selection: -	
	Min	Max	Factory setting [0] 899.0
			[1] 899.1
			[2] 899.2
			[3] 2139.3
			[4] 899.4
			[5] 899.5
			[6] 899.6
			[7] 2139.7
			[8] 2197.7
			[9] 899.9
			[10] 2199.1
			[11] 1407.7
			[12] 899.12
			[13] 2135.14
			[14] 2197.3
			[15] 2135.15
Description:	Selects bits to be sent to the PROFIdrive controller.		
	The individual bits are	rm status word 1.	
Index:	[0] $=$ Bit 0		
	[1] $=$ Bit 1		
	[2] $=$ Bit 2		
	[3] $=$ Bit 3		
	[4] $=$ Bit 4		
	[5] $=$ Bit 5		
	[6] $=$ Bit 6		
	$[7]=\text { Bit } 7$		
	$\text { [8] = Bit } 8$		
	[9] Bit 9		
	[10] = Bit 10		
	[11] $=$ Bit 11		
	$[12]=$ Bit 12		
	$[13]=$ Bit 13		
	[14] $=$ Bit 14		
	[15] $=$ Bit 15		
Dependency:	Refer to: p2088, r2089		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p2081[0...15]	BI: Binector-connector converter status word 2 / Bin/con ZSW2		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selectio	
	Min	Max	Factory setting 0
Description:	Selects bits to be sent to the PROFIdrive controller.		
Index:	$\begin{aligned} & {[0]=\text { Bit } 0} \\ & {[1]=\text { Bit } 1} \\ & {[2]=\text { Bit } 2} \\ & {[3]=\text { Bit } 3} \\ & {[4]=\text { Bit } 4} \\ & {[5]=\text { Bit } 5} \\ & {[6]=\text { Bit } 6} \\ & {[7]=\text { Bit } 7} \\ & {[8]=\text { Bit } 8} \\ & {[9]=\text { Bit } 9} \\ & {[10]=\text { Bit } 10} \\ & {[11]=\text { Bit } 11} \\ & {[12]=\text { Bit } 12} \\ & {[13]=\text { Bit } 13} \\ & {[14]=\text { Bit } 14} \\ & {[15]=\text { Bit } 15} \end{aligned}$		
Dependency:	Refer to: p2088, r2089		
Notice:	The parameter may be	result of p092	be changed.
p2082[0...15]	BI: Binector-connector converter status word 3 / Bin/con ZSW3		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selectio	
	Min	Max	Factory setting 0
Description:	Selects bits to be sent to the PROFIdrive controller. The individual bits are combined to form free status word 3.		
Index:	$[0]=$ Bit 0 $[1]=$ Bit 1 $[2]=$ Bit 2 $[3]=$ Bit 3 $[4]=$ Bit 4 $[5]=$ Bit 5 $[6]=$ Bit 6 $[7]=$ Bit 7 $[8]=$ Bit 8 $[9]=$ Bit 9 $[10]=$ Bit 10 $[11]=$ Bit 11 $[12]=$ Bit 12 $[13]=$ Bit 13 $[14]=$ Bit 14 $[15]=$ Bit 15		
Dependency:	Refer to: p2088, r2089		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p2083[0...15]	BI: Binector-connector converter status word 4 / Bin/con ZSW4		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection	
	Min	Max	Factory setting 0
Description:	Selects bits to be sent to the PROFIdrive controller.		
	The individual bits are combined to form free status word 4.		
Index:	[0] = Bit 0		
	[1] = Bit 1		
	[2] = Bit 2		
	[3] = Bit 3		
	[4] = Bit 4		
	[5] = Bit 5		
	[6] = Bit 6		
	[7] = Bit 7		
	[8] = Bit 8		
	[9] = Bit 9		
	[10] = Bit 10		
	[11] = Bit 11		
	[12] = Bit 12		
	[13] = Bit 13		
	[14] = Bit 14		
	[15] = Bit 15		
Dependency:	Refer to: p2088, r2089		
p2084[0...15]	BI: Binector-connector converter status word 5 / Bin/con ZSW5		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection	
	Min	Max	Factory setting
	-	-	0
Description:	Selects bits to be sent to the PROFIdrive controller.		
	The individual bits are combined to form free status word 5.		
Index:	[0] = Bit 0		
	[1] = Bit 1		
	[2] = Bit 2		
	[3] = Bit 3		
	[4] = Bit 4		
	[5] $=$ Bit 5		
	[6] = Bit 6		
	[7] $=$ Bit 7		
	[8] = Bit 8		
	[9] = Bit 9		
	[10] = Bit 10		
	[11] = Bit 11		
	[12] = Bit 12		
	[13] = Bit 13		
	[14] = Bit 14		
	[15] = Bit 15		
Dependency:	Refer to: p2088, r2089		

p2088[0...4]	Invert binector-connector converter status word / Bin/con ZSW inv				
CU240B-2	Access level: 3		Calculated: -	Data type: Unsigned16	
CU240E-2	Can be changed: U, T		Scaling: -	Data set: -	
CU240E-2 F	Units group: -		Unit selection: -		
	Min		Max	Factory settin 00000000000	
Description: Index:	Set [0] [1] [2] [3] [4]	ng to invert the individ Status word 1 Status word 2 Free status word 3 Free status word 4 Free status word 5	inputs of the binector	erter.	
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Inverted	Not inverted	-
		Bit 1	Inverted	Not inverted	-
		Bit 2	Inverted	Not inverted	-
		Bit 3	Inverted	Not inverted	-
	04	Bit 4	Inverted	Not inverted	-
	05	Bit 5	Inverted	Not inverted	-
	06	Bit 6	Inverted	Not inverted	-
	07	Bit 7	Inverted	Not inverted	-
	08	Bit 8	Inverted	Not inverted	-
	09	Bit 9	Inverted	Not inverted	-
		Bit 10	Inverted	Not inverted	-
		Bit 11	Inverted	Not inverted	-
		Bit 12	Inverted	Not inverted	-
		Bit 13	Inverted	Not inverted	-
		Bit 14	Inverted	Not inverted	-
	15	Bit 15	Inverted	Not inverted	-
Dependency:	Refer to: p2080, p2081, p2082, p2083, r2089				
p2088[0...4]	Invert binector-connector converter status word / Bin/con ZSW inv				
CU240B-2 DP	Access level: 3		Calculated: -	Data type: Unsigned16	
CU240E-2 DP	Can be changed: U, T		Scaling: -	Data set: -	
CU240E-2 DP F	Units group: -		Unit selection: -		
	Min		Max	Factory setting [0] 1010100000000000 bin [1...4] 0000000000000000 bin	
Description: Index:	Setting to invert the individual binector inputs of the binector connector converter.$\begin{aligned} & {[0]=\text { Status word } 1} \\ & {[1]=\text { Status word } 2} \\ & {[2]=\text { Free status word } 3} \\ & {[3]=\text { Free status word } 4} \\ & {[4]=\text { Free status word } 5} \end{aligned}$				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Inverted	Not inverted	-
	01	Bit 1	Inverted	Not inverted	-
	02	Bit 2	Inverted	Not inverted	-
	03	Bit 3	Inverted	Not inverted	-
	04	Bit 4	Inverted	Not inverted	-
	05	Bit 5	Inverted	Not inverted	-
	06	Bit 6	Inverted	Not inverted	-
	07	Bit 7	Inverted	Not inverted	-
	08	Bit 8	Inverted	Not inverted	-
	09	Bit 9	Inverted	Not inverted	-
	10	Bit 10	Inverted	Not inverted	-
	11	Bit 11	Inverted	Not inverted	-
	12	Bit 12	Inverted	Not inverted	-
	13	Bit 13	Inverted	Not inverted	-
	14	Bit 14	Inverted	Not inverted	-
	15	Bit 15	Inverted	Not inverted	-
Dependency:	Refer to: p2080, p2081, p2082, p2083, r2089				

r2089[0...4]	CO: Send binector-connector converter status word / Bin/con ZSW send					
	Access level: 3		Calculated: -	Data type: Unsigned16		
	Can be changed: -		Scaling:	Data set: -		
		s group: -	Unit selection: -			
	Min		Max	Factory se		
Description:	Connector output to interconnect the status words to a PZD send word.					
Index:	[0] = Status word 1					
	[1] = Status word 2					
	[2] = Free status word 3					
	[3] = Free status word 4					
	[4] = Free status word 5					
Bit field:	Bit	Signal name	1 signal	0 signal	FP	
	00	Bit 0	ON	OFF	-	
	01	Bit 1	ON	OFF	-	
	02	Bit 2	ON	OFF	-	
	03	Bit 3	ON	OFF	-	
	04	Bit 4	ON	OFF	-	
	05	Bit 5	ON	OFF	-	
	06	Bit 6	ON	OFF	-	
	07	Bit 7	ON	OFF	-	
	08	Bit 8	ON	OFF	-	
	09	Bit 9	ON	OFF	-	
		Bit 10	ON	OFF	-	
	11	Bit 11	ON	OFF	-	
		Bit 12	ON	OFF	-	
	13	Bit 13	ON	OFF	-	
	14	Bit 14	ON	OFF	-	
	15	Bit 15	ON	OFF	-	
Dependency:	Refer to: p2051, p2080, p2081, p2082, p2083					
Note:	r2089 together with p2080 to p2084 forms five binector-connector converters.					
r2090.0... 15	BO: PROFIdrive PZD1 receive bit-serial / PZD1 recv bitw					
	Access level: 3		Calculated: -	Data type: Unsigned16		
	Can be changed: -		Scaling: -	Data set: -		
	Units group: -		Unit selection: -			
	Min		Max	Factory setting		
Description:	Binector output for bit-serial interconnection of PZD1 (normally control word 1) received from the PROFIdrive con-				rive con-	
Bit field:		Signal name		1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-	
	01	Bit 1	ON	OFF	-	
	02	Bit 2	ON	OFF	-	
	03	Bit 3	ON	OFF	-	
	04	Bit 4	ON	OFF	-	
	05	Bit 5	ON	OFF	-	
	06	Bit 6	ON	OFF	-	
	07	Bit 7	ON	OFF	-	
	08	Bit 8	ON	OFF	-	
	09	Bit 9	ON	OFF	-	
	10	Bit 10	ON	OFF	-	
	11	Bit 11	ON	OFF	-	
	12	Bit 12	ON	OFF	-	
	13	Bit 13	ON	OFF	-	
	14	Bit 14	ON	OFF	-	
	15	Bit 15	ON	OFF	-	

r2092.0... 15	BO: PROFldrive PZD3 receive bit-serial / PZD3 recv bitw				
	Access level: 3			Data type: Unsigned16	
	Can be changed: -		Scaling:	Data set: -	
	Units group: -		Unit selection: -		
	Min		Max	Factory setting	
	-			-	
Description:	Binector output for bit-serial interconnection of PZD3 received from the PROFIdrive controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	
	15	Bit 15	ON	OFF	-

r2093.0... 15	BO: PROFIdrive PZD4 receive bit-serial / PZD4 recv bitw				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Data set: -	
	Units group: -		Unit selection: -		
	Min		Max	Factory se	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD4 (normally control word 2) received from the PROFIdrive controller.				
Bit field:		Signal name	1 signal	0 signal	FP
		Bit 0	ON	OFF	-
		Bit 1	ON	OFF	-
		Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
		Bit 13	ON	OFF	-
		Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
r2094.0... 15	BO: Connector-binector converter binector output / Con/bin outp				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Data set: -	
	Units group: -		Unit selection: -		
	Min		Max	Factory setting	
Description:	Binector output for bit-serial onward interconnection of a PZD word received from the PROFIdrive controller. The PZD is selected via p2099[0].				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	Refer to: p2099				

r2095.0... 15	BO: Connector-binector converter binector output / Con/bin outp			
	Access level: 3	Calculated: -	Data type: Unsigned16	
	Can be changed: -	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min	Max	Factory setting	
	-	-		
Description:	Binector output for bit-serial interconnection of a PZD word received from the PROFIdrive controller. The PZD is selected via p2099[1].			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Bit 0	ON	OFF	-
	01 Bit 1	ON	OFF	-
	02 Bit 2	ON	OFF	-
	03 Bit 3	ON	OFF	-
	04 Bit 4	ON	OFF	-
	05 Bit 5	ON	OFF	-
	06 Bit 6	ON	OFF	-
	07 Bit 7	ON	OFF	-
	08 Bit 8	ON	OFF	-
	09 Bit 9	ON	OFF	-
	10 Bit 10	ON	OFF	-
	11 Bit 11	ON	OFF	-
	12 Bit 12	ON	OFF	-
	13 Bit 13	ON	OFF	-
	14 Bit 14	ON	OFF	-
	15 Bit 15	ON	OFF	-
Dependency:	Refer to: p2099			
p2098[0...1]	Inverter connector-binector converter binector output / Con/bin outp inv			
	Access level: 3	Calculated: -	Data type: Unsigned16	
	Can be changed: U, T	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min	Max	Factory setting 0000000000000000 bin	
Description:	Setting to invert the individual binector outputs of the connector-binector converter. Using p2098[0], the signals of Cl : p2099[0] are influenced. Using p2098[1], the signals of Cl : p2099[1] are influenced.			
Bit field:	Bit Signal name	$1 \text { signal }$	0 signal	FP
	00 Bit 0	Inverted	Not inverted	
	01 Bit 1	Inverted	Not inverted	-
	02 Bit 2	Inverted	Not inverted	-
	03 Bit 3	Inverted	Not inverted	-
	04 Bit 4	Inverted	Not inverted	-
	05 Bit 5	Inverted	Not inverted	-
	06 Bit 6	Inverted	Not inverted	-
	07 Bit 7	Inverted	Not inverted	-
	08 Bit 8	Inverted	Not inverted	-
	09 Bit 9	Inverted	Not inverted	-
	10 Bit 10	Inverted	Not inverted	-
	11 Bit 11	Inverted	Not inverted	-
	$12 \quad \text { Bit } 12$	Inverted	Not inverted	-
	13 Bit 13	Inverted	Not inverted	-
	$14 \quad \text { Bit } 14$	Inverted	Not inverted	-
	15 Bit 15	Inverted	Not inverted	-
Dependency:	Refer to: r2094, r2095, p2099			

p2103[0...n]	BI: 1. Acknowledge faults / 1. Acknowledge		
CU240B-2	Access level: 3	Calculated: -	Data type: U32 / Binary
CU240E-2	Can be changed: U, T	Scaling: -	Data set: CDS, p0170
CU240E-2 F	Units group: -	Unit selectio	
	Min	Max	Factory setting [0] 722.2
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the first signal source to acknowledge faults.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	A fault acknowledgement is triggered with a 0/1 signal.		

p2103[0...n]	BI: 1. Acknowledge faults / 1. Acknowledge		
CU240B-2 DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU240E-2 DP	Can be changed: U, T	Scaling: -	Data set: CDS, p0170
CU240E-2 DP F	Units group: -	Unit selection: -	
	Min	Max	Factory setting [0] 2090.7 [1] 722.2 [2] 2090.7 [3] 2090.7
Description: Notice: Note:	Sets the first signal source to acknowledge faults. The parameter may be protected as a result of p0922 or p2079 and cannot be changed. A fault acknowledgement is triggered with a $0 / 1$ signal.		
p2104[0...n]	BI: 2. Acknowledge faults / 2. Acknowledge		
CU240B-2	Access level: 3	Calculated: -	Data type: U32 / Binary
CU240E-2	Can be changed: U, T	Scaling: -	Data set: CDS, p0170
CU240E-2 F	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Note:	Sets the second signal source to acknowledge faults. A fault acknowledgement is triggered with a $0 / 1$ signal.		
p2104[0...n]	BI: 2. Acknowledge faults / 2. Acknowledge		
CU240B-2 DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU240E-2 DP	Can be changed: U, T	Scaling: -	Data set: CDS, p0170
CU240E-2 DP F	Units group: -	Unit selection: -	
	Min	Max	Factory setting [0] 722.2 [1] 0 [2] 0 [3] 0
Description: Note:	Sets the second signal source to acknowledge faults.		
p2105[0...n]	BI: 3. Acknowledge faults / 3. Acknowledge		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Note:	Sets the third signal source to acknowledge faults.		

p2106[0...n]	BI: External fault 1 / External fault 1		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	-	
Description:	Sets the signal source for external fault 1.		
Dependency:	Refer to: F07860		
Note:	An external fault is triggered with a 1/0 signal.		
p2107[0...n]	BI: External fault 2 / External fault 2		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
		-	1
Description:	Sets the signal source for external fault 2.		
Dependency:	Refer to: F07861		
Note:	An external fault is triggered with a 1/0 signal.		
p2108[0...n]	BI: External fault 3 / External fault 3		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for external fault 3.		
	External fault 3 is initiated by the following AND logic operation:		
	- BI: p2108 negated		
	- BI: p3111		
	- BI: p3112 negated		
Dependency:	Refer to: p3110, p3111, p3112		
	Refer to: F07862		
Note:	An external fault is triggered with a $1 / 0$ signal.		
r2109[0...63]	Fault time removed in milliseconds / t_flt resolved ms		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min - [ms]	Max - [ms]	Factory setting - [ms]
Description:	Displays the system runtime in milliseconds when the fault was removed.		
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2130, r2133, r2136		
Notice:	The time comprises r2136 (days) and r2109 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		

r2123[0...63]	Alarm time received in milliseconds / t_alarm recv ms		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & -[\mathrm{ms}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{ms}] \end{aligned}$	Factory setting - [ms]
Description:	Displays the system runtime in milliseconds when the alarm occurred.		
Dependency:	Refer to: r2110, r2122, r2124, r2125, r2134, r2145, r2146		
Notice:	The time comprises r2145 (days) and r2123 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139). The structure of the alarm buffer and the assignment of the indices is shown in r 2122.		

r2124[0...63]	Alarm value / Alarm value		
	Access level: 3	Calculated: -	Data type: Integer32
	Can be changed: -	Unit selection: -	Data set: -
	Units group: -	Max	Factory setting
	Min	-	-
Description:	-	Displays additional information about the active alarm (as integer number).	
Dependency:	Refer to: r2110, r2122, r2123, r2125, r2134, r2145, r2146		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the alarm buffer and the assignment of the indices is shown in r2122.		

r2125[0...63]	Alarm time removed in milliseconds / t_alarm res ms		
	Access level: 3	Calculated: -	Scaling: -
	Can be changed: -	Unit selection: -	Data set: -
	Units group: -	Max	
	Min	$-[\mathrm{ms}]$	Factory setting
	$-[\mathrm{ms}]$	$-[\mathrm{ms}]$	
Description:	Displays the system runtime in milliseconds when the alarm was cleared.		
Dependency:	Refer to: r2110, r2122, r2123, r2124, r2134, r2145, r2146		
Notice:	The time comprises r2146 (days) and r2125 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the alarm buffer and the assignment of the indices is shown in r2122.		

p2126[0...19]	Setting fault number for acknowledge mode / Fault_no ackn_mode		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selectio	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 65535 \end{aligned}$	Factory setting 0
Description:	Selects the faults for which the acknowledge mode is to be changed		
Dependency:	Selects the faults and se Refer to: p2127	d acknowledge	he same index
Notice:	It is not possible to re-pa - if there is no existing fa - the message type is no - when a fault is present	e acknowledge	following cases:

p2127[0...19]	Sets acknowledgement mode / Acknowledge mode				
	Access level: 3	Calculated: -	Data type: Integer16		
	Can be changed: U, T	Scaling: -	Data set: -		
	Units group: -	Unit selection: -			
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 2 \end{aligned}$	Factory setting 1		
Description:	Sets the acknowledge mode for selected fault.				
Value:	1: Acknowledgment only using POWER ON 2: Ack IMMEDIATELY after the fault cause has been removed				
Dependency:	Selects the faults and sets the required acknowledge mode realized under the same index Refer to: p2126				
Notice:	It is not possible to re-parameterize the acknowledge mode of a fault in the following cases: - if there is no existing fault number. - the message type is not "fault" (F). - when a fault is present.				
Note:	The acknowledge mode can only be changed for faults with the appropriate identification. Example:				
p2128[0...15]	Selecting fault/alarm code for trigger / Message trigger				
	Access level: 3	Calculated: -	Data type: Unsigned16		
	Can be changed: U, T	Scaling: -	Data set: -		
	Units group: -	Unit selection: -			
	$\begin{aligned} & \operatorname{Min} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 65535 \end{aligned}$	Factory setting 0		
Description: Dependency:	Selects faults or alarms which can be used as trigger. Refer to r2129				
r2129.0... 15	COIBO: Trigger word for faults and alarms / Trigger word				
	Access level: 3	Calculated: -	Data type: Unsigned16		
	Can be changed: -	Scaling: -	Data set: -		
	Units group: -	Unit selection: -			
	Min	Max	Factory setting		
	-				
Description:	Trigger signal for the selected faults and alarms				
Bit field:	Bit Signal name	1 signal	0 signal	FP	
	00 Trigger signal p2128[0]	ON	OFF		
	01 Trigger signal p2128[1]	ON	OFF	-	
	02 Trigger signal p2128[2]	ON	OFF	-	
	03 Trigger signal p2128[3]	ON	OFF		
	04 Trigger signal p2128[4]	ON	OFF	-	
	05 Trigger signal p2128[5]	ON	OFF	-	
	06 Trigger signal p2128[6]	ON	OFF	-	
	07 Trigger signal p2128[7]	ON	OFF	-	
	08 Trigger signal p2128[8]	ON	OFF	-	
	09 Trigger signal p2128[9]	ON	OFF	-	
	10 Trigger signal p2128[10]	ON	OFF	-	
	11 Trigger signal p2128[11]	ON	OFF	-	
	12 Trigger signal p2128[12]	ON	OFF	-	
	13 Trigger signal p2128[13]	ON	OFF	-	
	14 Trigger signal p2128[14]	ON	OFF	-	
	15 Trigger signal p2128[15]	ON	OFF	-	
Dependency:	If one of the faults or alarms selected in p2128[n] occurs, then the particular bit of this binector output is set. Refer to: p2128				
Note:	CO: $\mathrm{r} 2129=0$--> None of the selected messages has occurred. CO: r2129 > 0 --> At least one of the selected messages has occurred.				

r2139.0... 12	CO/BO: Status word faults/alarms 1 / ZSW fault/alarm 1						
	Access level: 2		Data type: Unsigned16				
	Can be changed: -	Scaling: -	Data set: -				
	Units group: -	Unit selection: -					
	Min	Max	Factory se				
	-	-					
Description:	Displays the first status word of faults and alarms.						
Bit field:	Bit Signal name	1 signal	0 signal	FP			
	00 Being acknowledged	Yes	No	-			
	01 Acknowledgment required	Yes	No	-			
	03 Fault present	Yes	No	-			
	06 Internal message 1 present	Yes	No	-			
	07 Alarm present	Yes	No	-			
	08 Internal message 2 present	Yes	No	-			
	11 Alarm class bit 0	High	Low	-			
	12 Alarm class bit 1	High	Low	-			
Note:	Re bit 03, 07:						
	These bits are set if at least one fault/alarm occurs. Data is entered into the fault/alarm buffer with delay. This is the reason that the fault/alarm buffer should only be read if, after "fault present"/"alarm present" has occurred, a change in the buffer was also detected (r0944, r9744, r2121).						
	Re bit 06, 08:						
	These status bits are used for internal diagnostic purposes only.						
	Re bit 11, 12:						
	These status bits are used for the classification of internal alarm classes and are intended for diagnostic purposes only on certain automation systems with integrated SINAMICS functionality.						
p2140[0...n]	Hysteresis speed 2 / n_hysteresis 2						
	Access level: 3	Calculated: p0340 = 1,3,5	Data type: FloatingPoint32				
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180				
	Units group: 3_1	Unit selection: p0505					
	Min		Factory setting 90.00 [rpm]				
	0.00 [rpm]	300.00 [rpm]					
Description:	Sets the hysteresis speed (bandwidth) for the following signals: "\|n_act	< = speed threshold value 2" (BO: r2197.1) "	n_act	> speed threshold value 2" (BO: r2197.2)			
Dependency:	Refer to: p2155, r2197						
p2141[0...n]	Speed threshold 1 / n_thresh val 1						
	Access level: 3	Calculated: p0340 = 1,3,5	Data type: FloatingPoint32				
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180				
	Units group: 3_1						
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{rpm}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 210000.00 \text { [rpm] } \end{aligned}$	Factory setting 5.00 [rpm]				
Description: Dependency:	Sets the speed threshold value for the signal "f or n comparison value reached or exceeded" (BO: r2199.1). Refer to: p2142, r2199						

p2142[0...n]	Hysteresis speed 1 / n_hysteresis 1		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	$\begin{aligned} & \text { Min } \\ & 0.00 \text { [rpm] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 300.00[\mathrm{rpm}] \end{aligned}$	Factory setting 2.00 [rpm]
Description:	Sets the hysteresis speed (bandwidth) for the signal "f or n / v comparison value reached or exceeded" (BO: r2199.1).		
Dependency:	Refer to: p2141, r2199		
p2144[0...n]	BI: Motor stall monitoring enable (negated) / Mot stall enab neg		
	Access level: 4	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal source for the negated enable ($0=$ enable) of the motor stall monitoring.		
Dependency:	Refer to: p2163, p2164, p2166, r2197, r2198		
	Refer to: F07900		
Note:	If the enable signal is connected to 2197.7 then the stall signal is suppressed if there is no speed setpoint - actual value deviation.		
r2145[0...63]	Alarm time received in days / t_alarm recv days		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Displays the system runtime in days when the alarm occurred.		
Dependency:	Refer to: r2110, r2122, r2123, r2124, r2125, r2134, r2146		
Notice:	The time comprises r2145 (days) and r2123 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
r2146[0...63]	Alarm time removed in days / t_alarm res days		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Displays the system runtime in days when the alarm was cleared.		
Dependency:	Refer to: r2110, r2122, r2123, r2124, r2125, r2134, r2145		
Notice:	The time comprises r2146 (days) and r2125 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		

p2150[0...n]	Hysteresis speed 3 / n_hysteresis 3			
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32	
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180	
	Units group: 3_1	Unit selection: p0505		
	Min 0.00 [rpm]	$\begin{aligned} & \operatorname{Max} \\ & 300.00[\mathrm{rpm}] \end{aligned}$	Factory setting 2.00 [rpm]	
Description:	Sets the hysteresis speed (bandwidth) for the following signals: "\|n_act	< speed threshold value 3" (BO: r2199.0) "n_set >= 0" (BO: r2198.5) "n_act >=0" (BO: r2197.3)		
Dependency:	Refer to: p2161, r2197,			

p2151[0...n]	CI: Speed setpoint for messages/signals / n_set for msg				
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32		
	Can be changed: T	Scaling: p2000	Data set: CDS, p0170		
	Units group: -	Unit selection: -			
	Min	Max	Factory setting 1170[0]		
Description:	$\begin{aligned} & \text { Sets the signal source f } \\ & \text { "Speed setpoint - actua } \\ & \text { "Ramp-up/ramp-down o } \\ & \text { "\|n_set\| < p2161" (BO: } \\ & \text { "n_set > 0" (BO: r2198. } \end{aligned}$	setpoint for the following mes on within tolerance t_off" (BO O: r2199.5)			
Dependency:	Refer to: r2197, r2198, r2199				
p2152[0...n]	Delay for comparison $\mathbf{n} \gg \mathbf{n}$ _max / Del $\mathbf{n} \gg \mathrm{n} _$max				
	Access level: 3	Calculated: -	Data type: Unsigned16		
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180		
	Units group: -	Unit selection: -			
	Min 0 [ms]	Max 10000 [ms]	Factory setting 200 [ms]		
Description: Dependency:	Delay time for the comparison of the speed with the maximum speed.		Refer to: p1082, r1084, r1087, p2162		
p2153[0...n]	Speed actual value filter time constant / n_act_filt T				
	Access level: 3	Calculated: -	Data type: FloatingPoint32		
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180		
	Units group: -	Unit selection: -			
	Min 0 [ms]	$\begin{aligned} & \text { Max } \\ & 1000000[\mathrm{~ms}] \end{aligned}$	Factory setting 0 [ms]		
Description:	The smoothed actual speed/velocity is compared with the threshold values and is only used for messages and signals.				
Dependency:	Refer to: r2169				
p2155[0...n]	Speed threshold 2 / n_thresh val 2				
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32		
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180		
	Units group: 3_1	Unit selection: p0505			
	$\begin{aligned} & \text { Min } \\ & 0.00 \text { [rpm] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 210000.00[\mathrm{rpm}] \end{aligned}$	Factory setting 900.00 [rpm]		
Description:	Sets the speed threshold value for the following messages: "\|n_act	< = speed threshold value 2" (BO: r2197.1) "\|n_act	> speed threshold value 2" (BO: r2197.2)		
Dependency:	Refer to: p2140, r2197				

p2156[0...n]	On delay, comparison value reached / t_on cmpr val rchd					
	Access level: 3	Calculated: -	Data type: FloatingPoint32			
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180			
	Units group: -	Unit selection: -				
	Min 0.0 [ms]	$\begin{aligned} & \operatorname{Max} \\ & 10000.0[\mathrm{~ms}] \end{aligned}$	Factory setting 0.0 [ms]			
Description: Dependency:	Sets the switch-in delay time for the signal "comparison value reached" (BO: r2199.1). Refer to: p2141, p2142, r2199					
p2157[0...n]	Speed threshold 5 / n_thresh val 5					
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32			
	Can be changed: U, T	Scaling:	Data set: DDS, p0180			
	Units group: 3_1	Unit selection: p0505				
	$\begin{aligned} & \text { Min } \\ & 0.00 \text { [rpm] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 210000.00[\mathrm{rpm}] \end{aligned}$	Factory setting 900.00 [rpm]			
Description:	Sets the speed threshold value for the following messages: "\|n_act	< = speed threshold value 5" (BO: r2198.0) "	n_act	> speed threshold value 5" (BO: r2198.1)		
Dependency:	Refer to: p2150, p2158					
p2158[0...n]	Delay for n_act comparison with speed threshold value 5 / Del compar n_5					
	Access level: 3	Calculated: -	Data type: Unsigned16			
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180			
	Units group: -	Unit selection: -				
	Min 0 [ms]	$\begin{aligned} & \operatorname{Max} \\ & 10000[\mathrm{~ms}] \end{aligned}$	Factory setting 10 [ms]			
Description: Dependency:	Delay time for the comparison of the speed with the speed threshold value 5 (P2157). Refer to: p2150, p2157					
p2159[0...n]	Speed threshold 6 / n_thresh val 6					
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32			
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180			
	Units group: 3_1	Unit selection: p0505				
	$\begin{aligned} & \text { Min } \\ & 0.00 \text { [rpm] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 210000.00[\mathrm{rpm}] \end{aligned}$	Factory setting 900.00 [rpm]			
Description:	Sets the speed threshold value for the following messages: "\|n_act	< = speed threshold value 6" (BO: r2198.2) "	n_act	> speed threshold value 6" (BO: r2198.3)		
Dependency:	Refer to: p2150, p2160					
p2160[0...n]	Delay for n_act comparison with speed threshold value 6 / Del compar n_6					
	Access level: 3	Calculated: -	Data type: Unsigned16			
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180			
	Units group: -	Unit selection: -				
	Min 0 [ms]	$\begin{aligned} & \operatorname{Max} \\ & 10000[\mathrm{~ms}] \end{aligned}$	Factory setting 10 [ms]			
Description: Dependency:	Sets the delay time for the comparison of the speed with the speed threshold value 6 (p 2159). Refer to: p2150, p2159					

p2161[0...n]	Speed threshold 3 / n_thresh val 3			
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32	
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180	
	Units group: 3_1	Unit selection: p0505		
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [rpm] } \end{aligned}$	Max 210000.00 [rpm]	Factory setting 5.00 [rpm]	
Description: Dependency:	Sets the speed threshold value for the signal "\|n_act	< speed threshold value 3" (BO: r2199.0). Refer to: p2150, r2199		
p2162[0...n]	Hysteresis speed n_act > n_max / Hyst n_act>n_max			
	Access level: 3	Calculated: p0340 $=1,3,5$	Data type: FloatingPoint32	
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180	
	Units group: 3_1	Unit selection: p0505		
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \end{aligned}$	Max 60000.00 [rpm]	Factory setting 0.00 [rpm]	
Description: Dependency:	Sets the hysteresis speed (bandwidth) for the signal "n_act > n_max" (BO: r2197.6). Refer to: r1084, r1087, r2197			
Notice:	If one of the conditions is violated, p2162 is appropriately and automatically reduced when exiting the commissioning mode.		reduced when exiting the commission-	
Note:	If significant overshoot occurs in the maximum speed range (e.g. due to load shedding), you are advised to increase the dynamic response of the speed controller (if possible). If this is insufficient, the hysteresis p2162 can only be increased by more than 10% of the rated speed when the maximum speed (p 0322) of the motor is sufficiently greater than the speed limit p1082.			
p2163[0...n]	Speed threshold 4 / n_thresh val 4			
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32	
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180	
	Units group: 3_1	Unit selection: p0505		
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [rpm] } \end{aligned}$	Max 210000.00 [rpm]	Factory setting 90.00 [rpm]	
Description:	Sets the speed threshold value for the "speed setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7).			
Dependency:	Refer to: p2164, p2166, r2197			
p2164[0...n]	Hysteresis speed 4 / n_hysteresis 4			
	Access level: 3	Calculated: p0340 $=1,3,5$	Data type: FloatingPoint32	
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [rpm] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 200.00 \text { [rpm] } \end{aligned}$	Factory setting 2.00 [rpm]	
Description:	Sets the hysteresis speed (bandwidth) for the "speed setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7).			
Dependency:	Refer to: p2163, p2166, r2197			

p2166[0...n]	Off delay n_act = n_set It_del_off n_i=n_so		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 0.0 [ms]	Max 10000.0 [ms]	Factory setting 200.0 [ms]
Description:	Sets the switch-off delay time for the "speed setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7).		
Dependency:	Refer to: p2163, p2164, r2197		
p2167[0...n]	Switch-on delay n _act = $\mathrm{n} _$set / t_on n _act=n_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 0.0 [ms]	Max 10000.0 [ms]	Factory setting 200.0 [ms]
Description:	Sets the switch-on delay for the "speed setpoint - actual value deviation in tolerance t _on" signal/message (BO: r2199.4).		
r2169	CO: Actual speed smoothed signals / n_act smth message		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Data set: -
	Units group: 3_1	Unit selection: p0505	
	Min - [rpm]	Max - [rpm]	Factory setting - [rpm]
Description:	Displays the smoothed actual speed for messages/signals.		
Dependency:	Refer to: p2153		
p2170[0...n]	Current threshold value / I_thres		
	Access level: 3	Calculated: p0340 $=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2002	Data set: DDS, p0180
	Units group: 6_2	Unit selection: p0505	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [Arms] } \end{aligned}$	Max 10000.00 [Arms]	Factory setting 0.00 [Arms]
Description:	Sets the absolute current threshold for the messages.		
	"I_act >= I_threshold p2170" (BO: r2197.8)		
	"I_act < I_threshold p2170" (BO: r2198.8)		
Dependency:	Refer to: p2171		
p2171[0...n]	Current threshold value reached delay time / t_del I_thresh rch		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 0 [ms]	Max 10000 [ms]	Factory setting 10 [ms]
Description: Dependency:	Sets the delay time for the comparison of the current actual value (r0068) with the current threshold value (p2170). Refer to: p2170		

p2172[0...n]	DC link voltage, threshold value / Vdc thresh val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2001	Data set: DDS, p0180
	Units group: 5_2	Unit selection: p0505	
	$\begin{aligned} & \operatorname{Min} \\ & 0[\mathrm{~V}] \end{aligned}$	Max 2000 [V]	Factory setting 800 [V]
Description:	Sets the DC link voltage threshold value for the following messages: "Vdc_act <= Vdc_threshold p2172" (BO: r2197.9)		
Dependency:	Refer to: p2173		
p2173[0...n]	DC link voltage comparison delay time / t_del Vdc		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 0 [ms]	Max 10000 [ms]	Factory setting 10 [ms]
Description: Dependency:	Sets the delay time for the comparison of the DC link voltage r0070 with the threshold value p2172. Refer to: p2172		
p2174[0...n]	Torque threshold value $1 / \mathrm{M}$ _thresh val 1		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: 7_1	Unit selection: p0505	
	$\operatorname{Min}_{0.00[\mathrm{Nm}]}$	Max 20000000.00 [Nm]	Factory setting 5.13 [Nm]
Description:	```Sets the torque threshold value for the messages: "Torque setpoint < torque threshold value 1 and n_set reached" (BO: r2198.9) "Torque setpoint < torque threshold value 1" (BO: r2198.10) "Torque setpoint > torque threshold value 1" (BO: r2198.13)```		
Dependency:	Refer to: p2195, r2198		
p2175[0...n]	Motor locked speed threshold / Mot lock n_thresh		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	$\operatorname{Min}_{0.00}$	Max 210000.00 [rpm]	Factory setting 120.00 [rpm]
Description: Dependency: Note:	Sets the speed threshold for the message "Motor locked" (BO: r2198.6). Refer to: p0500, p2177, r2198 The following applies for sensorless vector control:		
p2176[0...n]	Torque threshold value comparison delay time / M_thrsh comp T_del		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 0 [ms]	Max 10000 [ms]	Factory setting 200 [ms]
Description: Dependency:	Sets the delay time for the comparison of the torque actual value (r0080) with torque threshold value 1 (p2174). Refer to: p2174		

p2177[0...n]	Motor locked delay time / Mot lock t_del		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 0.000 [s]	$\begin{aligned} & \operatorname{Max} \\ & 65.000 \text { [s] } \end{aligned}$	Factory setting 3.000 [s]
Description:	Sets the delay time for the message "Motor locked" (BO: r2198.6).		
Dependency:	Refer to: p0500, p2175, r2198		
Note:	The following applies for sensorless vector control:		
	At low speeds a locked motor can only be detected if no change is made to open-loop speed controlled operation. If this is the case, the value in p2177 must be reduced accordingly before time p2177 has elapsed in order to detect the locked state reliably.		
p2178[0...n]	Motor stalled delay time / Mot stall t_del		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	0.000 [s]	10.000 [s]	0.010 [s]
Description:	Sets the delay time for the message "Motor stalled" (BO: r2198.7).		
Dependency:	Refer to: r2198		
Note:	In the open-loop speed controlled operating range (see p1755, p1756), vector control stall monitoring depends on threshold p1745.		
	At higher speeds, the difference between flux setpoint r0083 and flux actual value r0084 is monitored.		
p2179[0...n]	Output load identification current limit / Outp_Id iden I_lim		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2002	Data set: DDS, p0180
	Units group: 6_2	Unit selection: p0505	
	Min 0.00 [Arms]	Max 1000.00 [Arms]	Factory setting 0.00 [Arms]
Description:	Sets the current limit for output load identification.		
Dependency:	Refer to: p2180		
Notice:	For synchronous motors the output current can be almost zero under no load conditions.		
Note:	A missing output load condition exists if the motor is either not connected or a phase has failed.		
p2180[0...n]	Missing output load delay time / No load t_delay		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	Min 0 [ms]	$\begin{aligned} & \operatorname{Max} \\ & 10000[\mathrm{~ms}] \end{aligned}$	Factory setting 2000 [ms]
Description:	Sets the delay time to detect a missing output load.		
Dependency:	Refer to: p2179		

p2184[0...n]	Load monitoring speed threshold value 3 / n_thresh 3		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0505	
	Min 0.00 [rpm]	Max 210000.00 [rpm]	Factory setting 1500.00 [rpm]
Description:	Sets the speed/torque The envelope curve (up p2182 (n_threshold 1) p2183 (n_threshold 2) p2184 (n_threshold 3)	for load monitoring. envelope curve) is defin hreshold 1, upper), p218 hreshold 2, upper), p218 hreshold 3, upper), p219	based on 3 speed thresholds: ld 1, lower) Id 2, lower) Id 3, lower)
Dependency:	The following applies: p2182 < p2183 < p2184		
p2185[0...n]	Load monitoring torque threshold 1, upper / M_thresh 1 upper		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: 7_1	Unit selection: p0505	
	Min 0.00 [Nm]	$\begin{aligned} & \text { Max } \\ & 20000000.00[\mathrm{Nm}] \end{aligned}$	Factory setting 10000000.00 [Nm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
Dependency:	The following applies: p2185 > p2186		
	Refer to: p2182, p2186		
Note:	The upper envelope curve is defined by p2185, p2187 and p2189.		
p2186[0...n]	Load monitoring torque threshold 1, lower / M_thresh 1 lower		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: 7_1	Unit selection: p0505	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{Nm}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 20000000.00[\mathrm{Nm}] \end{aligned}$	Factory setting 0.00 [Nm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
Dependency:	The following applies: p2186 < p2185		
	Refer to: p2182, p2185		
Note:	The lower envelope curve is defined by p2186, p2188 and p2190.		
p2187[0...n]	Load monitoring torque threshold 2, upper / M_thresh 2 upper		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: 7_1	Unit selection: p0505	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{Nm}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 20000000.00[\mathrm{Nm}] \end{aligned}$	Factory setting 10000000.00 [Nm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
Dependency:	The following applies: p2187 > p2188		
Note:	The upper envelope curve is defined by p2185, p2187 and p2189.		

p2193[0...n]	Load monitoring configuration / Load monit config		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 3 \end{aligned}$	Factory setting 1
Description:	Sets the load monitoring configuration.		
Value:	$0:$ Monitoring switched out 1: Monitoring torque and load $2:$ Monitoring speed and load $3:$ Monitoring load drop		
Dependency:	Refer to: p2182, p2183, p2184, p2185, p2186, p2187, p2188, p2189, p2190, p2192, r2198, p3230, p3231, p3232		
p2194[0...n]	Torque threshold value 2 / M_thresh val 2		
	Access level: 3	Calculated: p0340 = 1,3,5	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.00 \text { [\%] } \end{aligned}$	Factory setting 90.00 [\%]
Description:	The message "torque setpoint < p2174" (BO: r2198.10) and "torque utilization < p2194" (BO: r2199.11) are only evaluated after the run-up and the delay time has expired.		
Dependency:	Refer to: r0033, p2195, r2199		
p2195[0...n]	Torque utilization switch-off delay / M_util t_off		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.0 \text { [ms] } \end{aligned}$	Max 1000.0 [ms]	Factory setting 800.0 [ms]
Description:	The message "torque setpoint < p2174" (BO: r2198.10) and "torque utilization < p2194" (BO: r2199.11) are only evaluated after the run-up and the delay time has expired.		
Dependency:	Refer to: p2174, p2194		
p2196[0...n]	Torque utilization scaling / M_util scal		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,3), \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [\%] } \end{aligned}$	Max $1000.00 \text { [\%] }$	Factory setting 100.00 [\%]
Description:	Sets the scaling factor for torque utilization (r0033).		

p2200[0...n]	BI: Technology controller enable / Tec_ctrl enable		
	Access level: 2	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal source to switch in/switch out the technology controller. The technology controller is switched in with a 1 signal.		
p2201[0...n]	CO: Technology controller, fixed value 1 / Tec_ctr fix val 1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: DDS, p0180
	Units group: 9_1	Unit selection: p0595	
	$\begin{aligned} & \operatorname{Min} \\ & -200.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 10.00 [\%]
Description:	Sets the value for fixed value 1 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2202[0...n]	CO: Technology controller, fixed value 2 I Tec_ctr fix val 2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: DDS, p0180
	Units group: 9_1	Unit selection: p0595	
	$\begin{aligned} & \operatorname{Min} \\ & -200.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 20.00 [\%]
Description:	Sets the value for fixed value 2 of the technology controller.		
Dependency:	Refer to: p2220, p2221,	, r2224, r2229	
Notice:	A BICO interconnection	r that belongs to a driv	ys acts on the effective data

p2203[0...n]	CO: Technology controller, fixed value 3 / Tec_ctr fix val 3		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: DDS, p0180
	Units group: $9 _1$	Unit selection: p0595	
	Min	Max	Factory setting
	$-200.00[\%]$	$200.00[\%]$	
Description:	Sets the value for fixed value 3 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2204[0...n] CO: Technology controller, fixed value 4 / Tec_ctr fix val 4

Access level: 2	Calculated: -	Data type: FloatingPoint32

Can be changed: U, T Scaling: PERCENT Data set: DDS, p0180

Units group: 9_1 Unit selection: p0595
Min Max Factory setting
$-200.00[\%] \quad 200.00$ [\%] 40.00 [\%]
Description: Sets the value for fixed value 4 of the technology controller.
Dependency: Refer to: p2220, p2221, p2222, p2223, r2224, r2229
Notice: A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.

p2205[0...n]	CO: Technology controller, fixed value 5 / Tec_ctr fix val 5		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: DDS, p0180
	Units group: 9_1	Unit selection: p0595	
	$\begin{aligned} & \operatorname{Min} \\ & -200.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 50.00 [\%]
Description:	Sets the value for fixed value 5 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2206[0...n]	CO: Technology controller, fixed value 6 / Tec_ctr fix val 6		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: DDS, p0180
	Units group: 9_1	Unit selection: p0595	
	$\begin{aligned} & \operatorname{Min} \\ & -200.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 60.00 [\%]
Description:	Sets the value for fixed value 6 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2207[0...n]	CO: Technology controller, fixed value 7 / Tec_ctr fix val 7		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: DDS, p0180
	Units group: 9_1	Unit selection: p0595	
	$\begin{aligned} & \operatorname{Min} \\ & -200.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting $70.00 \text { [\%] }$
Description:	Sets the value for fixed value 7 of the technology controller. Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Dependency:			
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2208[0...n]	CO: Technology controller, fixed value 8 / Tec_ctr fix val 8		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: DDS, p0180
	Units group: 9_1	Unit selection: p0595	
	$\begin{aligned} & \operatorname{Min} \\ & -200.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting $80.00 \text { [\%] }$
Description:	Sets the value for fixed value 8 of the technology controller. Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Dependency:			
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2209[0...n]	CO: Technology controller, fixed value 9 / Tec_ctr fix val 9		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: DDS, p0180
	Units group: 9_1	Unit selection: p0595	
	$\begin{aligned} & \operatorname{Min} \\ & -200.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 90.00 [\%]
Description:	Sets the value for fixed value 9 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2210[0...n]	CO: Technology controller, fixed value $\mathbf{1 0} /$ Tec_ctr fix val 10		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: DDS, p0180
	Units group: 9_1	Unit selection: p0595	
	Min	Max	Factory setting
	$-200.00[\%]$	$100.00[\%]$	
Description:	Sets the value for fixed value 10 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2211[0...n]	CO: Technology controller, fixed value 11 / Tec_ctr fix val 11		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: DDS, p0180
	Units group: $9 _1$	Unit selection: p0595	
	Min	Max	Factory setting
	$-200.00[\%]$	$200.00[\%]$	$110.00[\%]$
Description:	Sets the value for fixed value 11 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2212[0...n] CO: Technology controller, fixed value 12 / Tec_ctr fix val 12
Access level: $2 \quad$ Calculated: - \quad Data type: FloatingPoint32
Can be changed: U, T Scaling: PERCENT Data set: DDS, p0180

Units group: 9_1
$\operatorname{Min}_{-200.00[\%]}$
-200.00 [\%]
Description: Sets the value for fixed value 12 of the technology controller.
Dependency: Refer to: p2220, p2221, p2222, p2223, r2224, r2229
Notice: A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.
p2213[0...n] CO: Technology controller, fixed value 13 / Tec_ctr fix val 13
Access level: 2 Calculated: - Data type: FloatingPoint32

Can be changed: U, T Scaling: PERCENT Data set: DDS, p0180

Units group: 9_1
$\operatorname{Min}_{-200.00}$ [\%]

Unit selection: p0595
Max
200.00 [\%]

Sets the value for fixed value 13 of the technology controller.
$\begin{array}{ll}\text { Description: } & \text { Sets the value for fixed value } 13 \text { of the technology co } \\ \text { Dependency: } & \text { Refer to: p2220, p2221, p2222, p2223, r2224, r2229 }\end{array}$
A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.
p2214[0...n] CO: Technology controller, fixed value 14 / Tec_ctr fix val 14
Access level: $2 \quad$ Calculated: - Data type: FloatingPoint32
Can be changed: U, T Scaling: PERCENT Data set: DDS, p0180

Units group: 9_1
$\operatorname{Min}_{-200.00}$ [\%]

Unit selection: p0595
Max
200.00 [\%]

Factory setting
140.00 [\%]

Description:
Sets the value for fixed value 14 of the technology controller.
Dependency: Refer to: p2220, p2221, p2222, p2223, r2224, r2229
Notice: A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.

p2215[0...n]	CO: Technology controller, fixed value 15 / Tec_ctr fix val 15		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: DDS, p0180
	Units group: 9_1	Unit selection: p0595	
	$\begin{aligned} & \operatorname{Min} \\ & -200.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00[\%] \end{aligned}$	Factory setting 150.00 [\%]
Description: Dependency: Notice:	Sets the value for fixed Refer to: p2220, p2221, A BICO interconnection	e technology controller. 3, r2224, r2229 er that belongs to a drive	ays acts on the effective data set.
p2216[0...n]	Technology controller fixed value selection method / Tec_ctr FixVal sel		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: DDS, p0180
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 2 \end{aligned}$	Factory setting 1
Description:	Selects the method that can be used to select the fixed setpoints.		
Value:	1: Fixed value selection direct		
p2220[0...n]	BI: Technology controller fixed value selection bit 0 / Tec_ctrl sel bit 0		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Dependency:	Sets the signal source to select the fixed value of the technology controller.		
p2221[0...n]	BI: Technology controller fixed value selection bit 1 / Tec_ctrl sel bit 1		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Dependency:	Sets the signal source to select the fixed value of the technology controller. Refer to: p2220, p2222, p2223		
p2222[0...n]	BI: Technology controller fixed value selection bit 2 / Tec_ctrl sel bit 2		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Dependency:	Sets the signal source to select the fixed value of the technology controller. Refer to: p2220, p2221, p2223		

p2223[0...n]	BI: Technology controller fixed value selection bit 3 / Tec_ctrl sel bit 3	
	Access level: 3 Calculated: - D	Data type: U32 / Binary
	Can be changed: T Scaling: - D	Data set: CDS, p0170
	Units group: - Unit selection: -	
	Min Max	Factory setting 0
Description: Dependency:	Sets the signal source to select the fixed value of the technology controller. Refer to: p2220, p2221, p2222	
r2224	CO: Technology controller, fixed value effective / Tec_ctr FixVal eff	
	Access level: 3 Calculated: - D	Data type: FloatingPoint32
	Can be changed: - Scaling: PERCENT D	Data set: -
	Units group: 9_1 Unit selection: p0595	
	Min Max $-[\%]$ $-[\%]$	Factory setting - [\%]
Description: Dependency:	Displays the selected and effective fixed value of the technology controller. Refer to: r2229	
r2225.0	CO/BO: Technology controller fixed value selection status word / Tec_ctr FixVal ZSW	
	Access level: 3 Calculated: - D	Data type: Unsigned16
	Can be changed: - Scaling: - D	Data set: -
	Units group: - Unit selection: -	
	Min Max F	Factory setting
	-	-
Description:	Displays the status word for the fixed value selection of the technology controller.	
Bit field:	Bit Signal name $\mathbf{1}$ signal 00 Technology controller fixed value selected Yes	$\mathbf{0}$ signal FP No 7950, 7951
r2229	Technology controller number actual / Tec_ctrl No. act	
	Access level: 3 Calculated: - D	Data type: Unsigned32
	Can be changed: - Scaling: - D	Data set: -
	Units group: - Unit selection: -	
	Min Max	Factory setting
Description: Dependency:	Displays the number of the selected fixed setpoint of the technology controller. Refer to: r2224	

p2251	Technology controller mode / Tec_ctrl mode		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	Sets the mode for using the technology controller output.		
Description:			
Value:	0 : Technology controller as main speed setpoint 1: Technology controller as supplementary speed setpoint		
Dependency:	p2251 $=0,1$ is only effective if the enable signal of the technology controller is interconnected (p2200 >0).		
p2253[0...n]	CI: Technology controller setpoint 1 / Tec_ctrl setp 1		
	Access level: 2	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal source for the setpoint 1 of the technology controller.		
Dependency:	Refer to: p2254, p2255		
p2254[0...n]	CI: Technology controller setpoint 2 / Tec_ctrl setp 2		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	$\underline{M i n}$	Max	Factory setting 0
Description:	Sets the signal source for the setpoint 2 of the technology controller.		
Dependency:	Refer to: p2253, p2256		
p2255	Technology controller setpoint 1 scaling / Tec_ctrl set1 scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min 0.00 [\%]	Max 100.00 [\%]	Factory setting 100.00 [\%]
Description:	Sets the scaling for the setpoint 1 of the technology controller. Refer to: p2253		
Dependency:			
p2256	Technology controller setpoint 2 scaling / Tec_ctrl set2 scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0.00 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.00[\%] \end{aligned}$	$\begin{aligned} & \text { Factory setting } \\ & 100.00 \text { [\%] } \end{aligned}$
Description:	Sets the scaling for the setpoint 2 of the technology controller. Refer to: p2254		
Dependency:			

p2257	Technology controller, ramp-up time / Tec_ctrl t_ramp-up		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\operatorname{Min}_{0.00}$	$\begin{aligned} & \operatorname{Max} \\ & 650.00 \text { [s] } \end{aligned}$	Factory setting $1.00[\mathrm{~s}]$
Description:	Sets the ramp-up time of the technology controller. Refer to: p2258 The ramp-up time is referred to 100%.		
Dependency:			
Note:			
p2258	Technology controller ramp-down time / Tec_ctrl t_ramp-dn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min}_{0.00} \\ & 0 . \mathrm{s}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 650.00 \text { [s] } \end{aligned}$	Factory setting 1.00 [s]
Description:	Sets the ramp-down time of the technology controller. Refer to: p2257		
Dependency:			
Note:	The ramp-down time is referred to 100%.		
r2260	CO: Technology controller setpoint after ramp-function generator I Tec_ctr set aftRFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: 9_1	Unit selection: p0595	
	Min - [\%]	$\begin{gathered} \operatorname{Max} \\ -[\%] \end{gathered}$	Factory setting - [\%]
Description:	Sets the setpoint after the ramp-function generator of the technology controller.		
p2261	Technology controller setpoint filter time constant / Tec_ctrl set T		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[s] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 60.000 \text { [s] } \end{aligned}$	Factory setting 0.000 [s]
Description:	Sets the time constant for the setpoint filter (PT1) of the technology controller.		
r2262	CO: Technology controller setpoint after filter / Tec_ctr set aftFlt		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: 9_1	Unit selection: p0595	
	$\begin{gathered} \operatorname{Min}_{-[\%]} \end{gathered}$	$\underset{-[\%]}{\operatorname{Max}}$	Factory setting - [\%]
Description:	Displays the smoothed setpoint after the setpoint filter (PT1) of the technology controller.		

p2263	Technology controller type / Tec_ctrl type		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{gathered} \operatorname{Min} \\ 0 \end{gathered}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Sets the technology controller type.		
Value:	0: D component in the actual value signal 1: D component in the fault signal		
p2264[0...n]	CI: Technology controller actual value / Tec_ctrl act val		
	Access level: 2	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	$\underline{M i n}$	Max	Factory setting 0
Description:	Sets the signal source for the actual value of the technology controller.		
p2265	Technology controller actual value filter time constant / Tec_ctrl act T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min 0.000 [s]	Max 60.000 [s]	Factory setting 0.000 [s]
Description:	Sets the time constant for the actual value filter (PT1) of the technology controller.		
r2266	CO: Technology controller actual value after filter / Tec_ctr act aftFlt		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: 9_1	Unit selection: p0595	
	$\begin{aligned} & \operatorname{Min} \\ & -[\%] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & -[\%] \end{aligned}$	Factory setting - [\%]
Description:	Displays the smoothed actual value after the filter (PT1) of the technology controller		
p2267	Technology controller upper limit actual value / Tec_ctrl u_lim act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: -
	Units group: 9_1	Unit selection: p0595	
	$\operatorname{Min}_{-200.00[\%]}$	$\underset{200.00}{\operatorname{Max}}$	Factory setting 100.00 [\%]
Description:	Sets the upper limit for the actual value signal of the technology controller. Refer to: p2264, p2265, p2271		
Dependency:			
	Refer to: p2264, p2265, p2271 Refer to: F07426		
Notice:	If the actual value exceeds this upper limit, this results in fault F07426.		

r2272	CO: Technology controller actual value scaled / Tech_ctrl act scal		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: 9_1	Unit selection: p0595	
	$\begin{aligned} & \operatorname{Min} \\ & -[\%] \end{aligned}$	$\begin{gathered} \operatorname{Max} \\ -[\%] \end{gathered}$	Factory setting - [\%]
Description: Dependency:	Displays the scaled actual value signal of the technology controller. Refer to: p2264, p2265, r2266, p2267, p2268, p2269, p2270, p2271		
r2273	CO: Technology controller error / Tec_ctrl error		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: 9_1	Unit selection: p0595	
	$\begin{gathered} \operatorname{Min}_{-[\%]} \end{gathered}$	$\begin{aligned} & \operatorname{Max} \\ & -[\%] \end{aligned}$	Factory setting - [\%]
Description: Dependency:	Displays the error (system deviation) between the setpoint and actual value of the technology controller. Refer to: p2263		
p2274	Technology controller differentiation, time constant / Tec_ctrl D comp T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{~s}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 60.000 \text { [s] } \end{aligned}$	Factory setting 0.000 [s]
Description: Note:	Sets the time constant for the differentiation (D component) of the technology controller. p2274 = 0: Differentiation is disabled.		
p2280	Technology controller proportional gain / Tec_ctrl Kp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0.000 \end{aligned}$	Max 1000.000	Factory setting 1.000
Description: Note:	Sets the proportional gain (P component) of the technology controller. p2280 $=0$: The proportional gain is disabled.		
p2285	Technology controller integral time / Tec_ctrl Tn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[s] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 10000.000 \text { [s] } \end{aligned}$	$\begin{aligned} & \text { Factory setting } \\ & 30.000[\mathrm{~s}] \end{aligned}$
Description: Notice:	Sets the integral time (I component, integrating time constant) of the technology controller. The following applies for p2251 $=0$: If the output of the technology controller lies within the range of a suppression (skip) bandwidth (p1091 ... p1094, p1101) or below the minimum speed (p 1080), the integral component of the controller is held so that the controller temporarily works as a P controller. This is necessary in order to prevent the controller from behaving in an unstable manner, as the ramp-function generator switches to the parameterized up and down ramps ($\mathrm{p} 1120, \mathrm{p} 1121$) at the same time in order to avoid setpoint steps. This state can be exited or avoided by changing the controller setpoint or by using the start speed (= minimum speed).		
Note:	When the controller output reaches the limit, the I component of the controller is held. p2285 = 0: The integral time is disabled and the I component of the controller is reset.		

p2286[0...n]	$\mathrm{BI}:$ Hold technology controller integrator / Tec_ctr integ stop		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 56.13
Description:	Sets the signal source to hold the integrator for the technology controller.		
p2289[0...n]	CI: Technology controller pre-control signal / Tec_ctrl prectrl		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the pre-control signal of the technology controller.		
p2291	CO: Technology controller maximum limiting / Tec_ctrl max_limit		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & -200.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 100.00 [\%]
Description:	Sets the maximum limit of the technology controller. Refer to: p2292		
Dependency:			
	The maximum limit must always be greater than the minimum limit ($\mathrm{p} 2291>\mathrm{p} 2292$)		
p2292	CO: Technology controller minimum limiting / Tec_ctrl min_lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & -200.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 0.00 [\%]
Description:	Sets the minimum limit of the technology controller.		
Dependency:	Refer to: p2291		
	The maximum limit must always be greater than the minimum limit ($\mathrm{p} 2291>\mathrm{p} 2292$)		
p2293	Technology controller ramp-up/ramp-down time / Tec_ctr ramp up/dn		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min $0.00 \text { [s] }$	$\begin{aligned} & \operatorname{Max} \\ & 100.00 \text { [s] } \end{aligned}$	Factory setting 1.00 [s]
Description:	Sets the ramping time for the output signal of the technology controller.		
Dependency:	Refer to: p2291, p2292		
Note:	The time refers to the set maximum and minimum limits (p2291, p 2292).		

r2294	CO: Technology controller output signal / Tec_ctrl outp_sig		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	$-[\%]$	$-[\%]$	$-[\%]$
Description:	Displays the output signal of the technology controller.		
Dependency:	Refer to: p2295		

p2295	CO: Technology controller output scaling / Tec_ctrl outp scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	$-100.00[\%]$	$100.00[\%]$	$100.00[\%]$
Description:	Sets the scaling for the output signal of the technology controller.		

p2296[0...n]	CI: Technology controller output scaling / Tec_ctrl outp scal		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 2295[0]
Description: Dependency:	Sets the signal source for the scaling value of the technology controller. Refer to: p2295		
p2297[0...n]	CI: Technology controller maximum limit signal source / Tec_ctrl m_Im s_sc		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 1084[0]
Description:	Sets the signal source for the maximum limiting of the technology controller.		
Dependency:	Refer to: p2291		
Note:	In order that the output of the technology controller does not exceed the maximum speed limit, its upper limit p2297 should be connected to the actual maximum speed r1084.		

p2298[0...n]	CI: Technology controller minimum limit signal source / Tec_ctrl min_I s_s		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 1087[0]
Description:	Sets the signal source for the minimum limiting of the technology controller.		
Dependency:	Refer to: p2292		
Note:	If the technology controller is rotated in a negative direction in mode p2251 $=0$, its lower limit p2298 should be connected to the actual minimum speed r1087.		
	In mode p2251 = 1, p22	be connected to the out	function generator r1150.

p2299[0...n]	Cl : Technology controller limit offset / Tech_ctrl lim offs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	$\underline{\text { Min }}$	Max	Factory setting 0
Description:	Sets the signal source for the offset of the output limiting of the technology controller.		
Note:	In mode p2251 = 1, p2299 must be connected to the output of ramp-function generator r1150 so that the technology controller stops when the speed limits are reached (see also p2297, p2298).		
p2302	Technology controller output signal starting value / Tec_ctr start val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 0.00 [\%]
Description:	When the technology controller is enabled (refer to p2200 and r0056.3) then its output signal (r2294) starts to run from this starting value.		
Dependency: Note:	The starting value is only effective in the mode "technology controller as main speed setpoint" ($\mathrm{p} 2251=0$). If the technology controller operates on the speed/setpoint channel ($\mathrm{p} 2251=0$), then the starting value is interpreted as the starting speed and when operation is enabled, is connected to the output of the technology controller (r2294).		
p2306	Technology controller fault signal inversion / Tec_ctrl fault inv		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1 \end{aligned}$	Factory setting 0
Description:	Setting to invert the fault signal of the technology controller. The setting depends on the type of control loop.		
Value:	0 : No inversion 1: Inversion		
Caution:	If the actual value inversion is incorrectly selected, then the closed-loop control with the technology controller can become unstable and can oscillate!		
Note:	The correct setting can be determined as follows: - inhibit the technology controller (p2200 = 0). - increase the motor speed and in so doing, measure the actual value signal (of the technology controller). - if the actual value increases with increasing motor speed, then the inversion should be switched out. - if the actual value decreases with increasing motor speed, then the inversion should be set. If value $=0$: The drive reduces the output speed when the actual value rises (e.g. for heating fans, intake pump, compressor). If value $=1$: The drive increases the output speed when the actual value increases (e.g. for cooling fans, discharge pumps).		

r2344	CO: Technology controller last speed setpoint (smoothed) / Tec_ctrl n_setp_sm
	Access level: 3 Calculated: - Data type: FloatingPoint32
	Can be changed: - Scaling: PERCENT Data set:
	Units group: - Unit selection: -
	Min Max Factory setting $-[\%]$ $-[\%]$ $-[\%]$
Description:	Displays the smoothed speed setpoint of the technology controller prior to switching to operation with fault response (see p2345).
Dependency:	Refer to: p2345
Note:	The smoothing time is 10 s .
p2345	Technology controller fault response / Tech_ctrl flt resp
	Access level: 3 Calculated: - Data type: Integer16
	Can be changed: U, T Scaling: - Data set: -
	Units group: - Unit selection: -
	Min Max Factory setting 0 2 0
Description:	Sets the response of the technology controller to the occurrence of a fault F07426 (technology controller actual value limited). The fault response is executed if status bits 8 or 9 in technology controller status word r2349 are set. If both status bits are zero, a switch back to technology controller operation will follow.
Value:	0: Function inhibited 1: On fault: Changeover to r2344 (or p2302) 2: On fault: Changeover to p2215
Dependency:	The parameterized fault response is only effective if the technology controller mode is set to p2251 $=0$ (technology controller as main setpoint).
	Refer to: p2267, p2268, r2344
	Refer to: F07426
Notice:	Dependent upon the application, the changing over of the setpoint when fault F07426 occurs can lead to the fault condition disappearing and the re-activation of the technology controller. This can repeat itself and cause limit oscillations. In this case a suitable fault response or a different fixed setpoint 15 for the fault response p2345 $=2$ should be selected.
Note:	The parameterized fault response can only be achieved if the default fault response of the technology controller fault F07426 is set to "NONE" (see p2100, p2101). If a fault response other than "NONE" is entered in p2101 for F07426, p2345 must be set to zero. If the fault occurs during ramping up to the starting setpoint p2302, this starting setpoint is retained as the final value (there is no changeover to the fault response setpoint).

r3131	CO: Current flt value / Current flt value		
	Access level: 3	Calculated: -	Data type: Integer32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	-	
Description:	Displays the fault value of the oldest active fault.		
Dependency:	Refer to: r2131, r3132		
r3132	CO: Actual component number / Act comp_no.		
	Access level: 3	Calculated: -	Data type: Integer32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	-	
Description:	Displays the component number of the oldest fault that is still active.		
Dependency:	Refer to: r2131, r3131		
p3230[0...n]	CI: Load monitoring, speed actual value / Load monit n_act		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the speed actual value of the load monitoring.		
Dependency:	Refer to: r2169, p2181, p2192, p2193, p3231		
	Refer to: A07920, A07921, A07922, F07923, F07924, F07925		
Note:	The parameter is only effective for p2193 = 2 .		
p3231[0...n]	Load monitoring speed deviation / Load monit n_dev		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Data set: DDS, p0180
	Units group: 3_1	Unit selection: p0	
	$\begin{aligned} & \text { Min } \\ & 0.00 \text { [rpm] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 210000.00[\mathrm{rpm}] \end{aligned}$	Factory setting 150.00 [rpm]
Description:	Sets the permissible speed deviation during load monitoring (for p2193-2).		
Dependency:	Refer to: r2169, p2181, p2193, p3230		
	Refer to: A07920, A07921, A07922, F07923, F07924, F07925		
p3232[0...n]	BI: Load monitoring failure detection / Load_moni fail_det		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Data set: CDS, p0170
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 1
Description:	Sets the signal source for detecting a failure.		
Dependency:	Refer to: p2192, p2193		
	Refer to: F07936		
Note:	Monitoring is triggered with a 0 signal, as soon as the time in p2192 has expired.		

r3930[0...4]	Power unit EEPROM characteristics / PU characteristics		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Displays the characteristics (A5E number and versions) of the power unit. [0]: A5E number xxxx (A5Exxxxyyyy) [1]: A5E number yyyy (A5Exxxxyyyy) [2]: File version (logistic) [3]: File version (fixed data) [4]: File version (calib data)		
p3950	Service parameter / Serv. par.		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: $\mathrm{C}, \mathrm{U}, \mathrm{T}$	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	For service personnel only.		

r3996	Parameter write inhibit status / Par_write inhib st			
	Access level: 3	Calculated: -	Data type: Unsigned8	
	Can be changed: -	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min	Max	Factory setting	
Description:	Displays whether writing to par r3996 = 0: Parameter write not inhibited. $0<r 3996<100:$ Parameter write inhibited. The	rs is inhibited. shows how the calculati	ssing.	
r7760	Write protection status / Write prot stat			
	Access level: 3	Calculated: -	Data type: Unsigned16	
	Can be changed: -	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min	Max	Factory setting	
Description:	Displays the status for write protection of adjustable parameters.			
Bit field:	Bit Signal name 00 Write protection active	1 signal	0 signal	FP
Note:	Write protection can be activated/deactivated via p7760 on the Control Unit.			
p7761	Write protection / Write protection			
	Access level: 3	Calculated: -	Data type: Integer16	
	Can be changed: U, T	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1 \end{aligned}$	Factory setting 0	
Description:	Setting for activating/de-activating the write protection for adjustable parameters.			
Value:	0 : Inactive 1: Active			
Note:	The following parameters are - p0003 (BOP access level) - p0971 (drive object save pa - p0977 (save all parameters) - p3950 (service parameters) - p3981 (acknowledge fault, - p7760 (adjustable paramete	drom the write protect ect) protection)		
r7841[0...15]	Power Module serial number / PM serial no.			
	Access level: 4	Calculated: -	Data type: Unsigned8	
	Can be changed: -	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min	Max	Factory setting	
Description:	Displays the actual serial number of the Power Module.			
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.			

r7901[0...43]	Sampling times / t_sample		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & -[\mu \mathrm{s}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & -[\mu \mathrm{s}] \end{aligned}$	Factory setting - [$\mu \mathrm{s}$]
Description:	Displays the sampling times currently present on the drive unit. For $\mathrm{r} 7901[\mathrm{x}]=0$, the following applies: The time slice is not active.		
r7903	Hardware sampling times still cannot be assigned / HW t_samp free		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	These free sampling times can be used by OA applications such as DCC (Drive Control Chart) or FBLOCKS (free function blocks).		
Note:	OA: Open Architecture		

r8570[0...39]	Macro drive object / Macro DO		
	Access level: 1	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Displays the macro file saved in the appropriate directory on the memory card/device memory Refer to: p0015		
Dependency:			
Note:	For a value $=9999999$, the following applies: The read operation is still running .		

p9301	SI Motion enable safety functions (processor 2) / SI Mtn enable P2			
PM240	Access level: 3	Calculated: -	Data type	
PM250	Can be changed: C(95)	Scaling: -	Data set: -	
PM260	Units group: -	Unit selection: -		
	Min	Max	Factory se 00000000 00000000	0000
Description:	Sets the enable signals for the safe motion monitoring.			
Bit field:	Bit Signal name 00 Enable SLS 17 Enable SDI	1 signal Enable Enable	0 signal Inhibit Inhibit	$\begin{aligned} & \text { FP } \\ & - \\ & 2861 \end{aligned}$
Dependency:	Refer to: p9501 Refer to: F01682, F01683			
Notice: Note:	This parameter is overwrit For bit $30=1$, PROFIsafe A change only becomes F-DI: Failsafe Digital Inpu SDI: Safe Direction (safe SLS: Safely-Limited Spee SSM: Safe Speed Monito	copy function of the safe 00 must be configured a POWER ON. tion) vant feedback signal from	egrated in th monitoring)	
p9306	SI Motion function specification (processor 2) / SI Mtn fct spec P2			
CU240E-2 DP F	Access level: 3	Calculated: -	Data type:	
CU240E-2 F	Can be changed: C(95)	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min 1	$\begin{aligned} & \operatorname{Max} \\ & 3 \end{aligned}$	Factory se 1	

Description: Sets the function specification for the safe motion monitoring.

| Value: | $1: \quad$ Safety without encoder |
| :--- | :--- | :--- |
| | $3: \quad$ Safety without encoder with accel_monitoring/delay time |
| Dependency: | Refer to: C30711 |
| Notice: | This parameter is overwritten by the copy function of the safety functions integrated in the drive. |

p9307	SI Motion function configuration (processor 2) / SI Mtn config P2		
PM240	Access level: 3	Calculated: -	Data type: Unsigned32
PM250	Can be changed: C(95)	Scaling: -	Data set: -
PM260	Units group: -	Unit selection: -	
CU240E-2 DP F			
CU240E-2 F			

	Min	Max		Factory setting 0011 bin	
Description:	Sets the function configuration for safe motion monitoring.				
Bit field:		Signal name	1 signal	0 signal	FP
		Extended message acknowledgement	Yes	No	-
		Setpoint velocity limit for STOP F	No	Yes	-
Dependency:	Refer to: C01711				
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.				
Note:	Re bit 00:				
	When the function is activated, a safety-relevant acknowledgement (internal event acknowledge) can be performed by selecting/deselecting STO.				
	Re bit 01:				
	When the function is activated, the active setpoint velocity limit (CO: r9733) is set to zero when STOP F is active.				

p9321[0...7]	SI Motion gearbox motor/load denominator (processor 2) / SI Mtn gear den P2
CU240E-2 DP F	Access level: 3 Calculated: - Data type: Unsigned32
CU240E-2 F	Can be changed: C(95) Scaling: - Data set: -
	Units group: - Unit selection: -
	Min Max Factory setting 1 2147000000 1
Description: Index:	Sets the denominator for the gearbox between the motor and the load. $\begin{aligned} & {[0]=\text { Gearbox } 1} \\ & {[1]=\text { Gearbox } 2} \\ & {[2]=\text { Gearbox } 3} \\ & {[3]=\text { Gearbox } 4} \\ & {[4]=\text { Gearbox } 5} \\ & {[5]=\text { Gearbox } 6} \\ & {[6]=\text { Gearbox } 7} \\ & {[7]=\text { Gearbox } 8} \end{aligned}$
Dependency:	Refer to: p9322
Notice:	It is not possible to change over the gearbox stages. Gearbox 1 (index 0) is always active.
p9322[0...7]	SI Motion gearbox motor/load numerator (processor 2) / SI Mtn gear num P2
CU240E-2 DP F	Access level: 3 Calculated: - Data type: Unsigned32
CU240E-2 F	Can be changed: C(95) Scaling: - Data set: -
	Units group: - Unit selection: -
	Min Max Factory setting 1 2147000000 1
Description: Index:	Sets the numerator for the gearbox between the motor and the load. [0] = Gearbox 1 [1] = Gearbox 2 [2] = Gearbox 3 [3] = Gearbox 4 [4] = Gearbox 5 [5] = Gearbox 6 [6] = Gearbox 7 [7] = Gearbox 8
Dependency:	
Notice: Note:	It is not possible to change over the gearbox stages. Gearbox 1 (index 0) is always active. In the case of encoderless monitoring functions, the pole pair number must be multiplied by the numerator of the gearbox ratio. Example: Gearbox ratio 1:4, pole pair number $($ r0313 $)=2$ $\text { --> p9321 = 1, p9322 = } 8(4 \times 2)$
p9331[0...3]	SI Motion SLS limit values (processor 2) / SI Mtn SLS lim P2
	Access level: 3 Calculated: - Data type: FloatingPoint32
CU240E-2 DP F	Can be changed: C(95) Scaling: - Data set: -
CU240E-2 F	Units group: - Unit selection: -
	Min Max Factory setting $0.01[\mathrm{rpm}]$ $100000.00[\mathrm{rpm}]$ $2000.00[\mathrm{rpm}]$
Description: Index:	$\begin{aligned} & {[0]=\text { Limit value SLS1 }} \\ & {[1]=\text { Limit value SLS2 }} \\ & {[2]=\text { Limit value SLS3 }} \\ & {[3]=\text { Limit value SLP4 }} \end{aligned}$
Dependency:	Refer to: p9363, p9531
Notice: Note:	This parameter is overwritten by the copy function of the safety functions integrated in the drive. SLS: Safely-Limited Speed

p9342	SI Motion act. val. comparison tolerance (crossw.) (processor 2) / SI Mtn actV tol P2
	Access level: 3 Calculated: - Data type: FloatingPoint32
CU240E-2 DP F	Can be changed: C(95) Scaling: - Data set: -
CU240E-2 F	Units group: - Unit selection: -
	Min Max Factory setting $0.0010\left[{ }^{\circ}\right]$ $360.0000\left[{ }^{\circ}\right]$ $12.0000\left[{ }^{\circ}\right]$
Description: Dependency:	Sets the tolerance for the cross-check of the actual position between processor 1 and processor 2. Refer to: p9542 Refer to: C01711
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.
p9345	SI Motion SSM filter time (processor 2) / SI Mtn SSM filt P2
PM240	Access level: 3 Calculated: - Data type: FloatingPoint32
PM250	Can be changed: $\mathrm{C}(95)$ Scaling: - Data set: -
PM260	Units group: - Unit selection: -
	Min Max Factory setting $0.00[\mu \mathrm{~s}]$ $100000.00[\mu \mathrm{~s}]$ $0.00[\mu \mathrm{~s}]$
Description: Notice: Note:	Sets the filter time for the SSM feedback signal to detect standstill. This parameter is overwritten by the copy function of the safety functions integrated in the drive. The filter time is effective only if the function is enabled (p9301.16 = p9501.16 = 1). The parameter is included in the crosswise data comparison of the two monitoring channels. SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring)
p9346	SI Motion SSM velocity limit (processor 2) / SI Mtn SSM v_limP2
	Access level: 3 Calculated: - Data type: FloatingPoint32
CU240E-2 DP F	Can be changed: C(95) Scaling: - Data set: -
CU240E-2 F	Units group: - Unit selection: -
	Min Max Factory setting $0.00[\mathrm{rpm}]$ $100000.00[\mathrm{rpm}]$ $20.00[\mathrm{rpm}]$
Description:	Sets the velocity limit for the SSM feedback signal to detect standstill ($n<n x$). When this limit value is undershot, the signal "SSM feedback signal active" is set.
Dependency:	Refer to: p9546
	The following applies for p9306 = 3: The "SAM" function is switched out if the selected threshold value is undershot.
Notice: Note:	This parameter is overwritten by the copy function of the safety functions integrated in the drive. SAM: Safe Acceleration Monitor (safe acceleration monitoring) SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring)
p9347	SI Motion SSM velocity hysteresis (processor 2) / SI Mtn SSM Hyst P2
	Access level: 3 Calculated: - Data type: FloatingPoint32
CU240E-2 DP F	Can be changed: C(95) Scaling: - Data set: -
	Units group: - Unit selection: -
	Min Max Factory setting $0.0010[\mathrm{rpm}]$ $500.0000[\mathrm{rpm}]$ $10.0000[\mathrm{rpm}]$
Description: Dependency: Notice: Note:	The velocity hysteresis is effective only if the function is enabled (p9301.16 = p9501.16 = 1). The parameter is included in the crosswise data comparison of the two monitoring channels. SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring)

p9365	SI Motion SDI delay time (processor 2) / SI Mtn SDI t P2		
CU240E-2 DP F	Access level: 3	Calculated: -	Data type: FloatingPoint32
CU240E-2 F	Can be changed: C(95)	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mu \mathrm{~s}] \end{aligned}$	Max 600000000.00 [$\mu \mathrm{s}$]	Factory setting $100000.00[\mu \mathrm{~s}]$
Description:	Sets the delay time for the function "Safe motion direction" (SDI). When selecting the SDI function, motion in the monitored direction is permissible as a maximum for this time; this means that this time can be used for braking existing motion.		
Dependency:	Refer to: p9364, p9366		
Notice: Note:	This parameter is overwritten by the copy function of the safety functions integrated in the drive. SDI: Safe Direction (safe motion direction)		
p9366	SI Motion SDI stop response (processor 2) / SI Mtn SDI Stop P2		
CU240E-2 DP F	Access level: 3	Calculated: -	Data type: Integer16
CU240E-2 F	Can be changed: C(95)	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min 0	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 1
Description:	Sets the stop response for the function "Safe motion direction" (SDI). This setting applies to both directions of motion.		
Value:	$\begin{array}{ll}0: & \text { STOP A } \\ \text { 1: } & \text { STOP B }\end{array}$		
Dependency:	Refer to: p9364, p9365		
	Refer to: C30716		
Note:	SDI: Safe Direction (safe motion direction)		
p9368	SI Motion SAM velocity limit (processor 2) / SI Mtn SAM v_limP2		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
CU240E-2 DP F	Can be changed: C(95)	Scaling: -	Data set: -
CU240E-2 F	Units group: -	Unit selection: -	
	$\operatorname{Min}_{0.00[r p m}$	Max $1000.00 \text { [rpm] }$	Factory setting 0.00 [rpm]
Description:	Sets the velocity tolerance limit for the "SAM" function. SAM is de-activated once the set velocity limit has been undershot.		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	SAM: Safe Acceleration Monitor (safe acceleration monitoring)		
	SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring)		
	For p9568 $=$ p9368 $=0$, the following applies:		
	The value in p9546/p9346 (SSM) is applied as the velocity limit for SAM.		

p9383	SI Motion brake ramp monitoring time (processor 2) / SI Mtn rp t_mon P2
CU240E-2 DP F	Access level: 3 Calculated: - Data type: FloatingPoint32
CU240E-2 F	Can be changed: $\mathrm{C}(95)$ Scaling: - Data set: -
	Units group: - Unit selection: -
	Min Max Factory setting $500.00[\mathrm{~ms}]$ $1000000.00[\mathrm{~ms}]$ $10000.00[\mathrm{~ms}]$
Description:	Sets the monitoring time to define the brake ramp. The rate of rise of the brake ramp depends upon p9381 (reference value) and p9383 (monitoring time).
Dependency:	Refer to: p9381, p9382
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.
p9386	SI Motion delay time of the evaluation sensorless (processor 2) / SI Mtn t_del SL MM
CU240E-2 DP F	Access level: 3 Calculated: - Data type: FloatingPoint32
CU240E-2 F	Can be changed: C(95) Scaling: - Data set:
	Units group: - Unit selection: -
	Min Max Factory setting $5.00[\mathrm{~ms}]$ $1000.00[\mathrm{~ms}]$ $100.00[\mathrm{~ms}]$
Description:	Sets the evaluation delay for encoderless actual value sensing after pulse enable. The value should be greater than or equal to the motor magnetizing time.
Dependency:	Refer to: C01711
p9387	SI Motion encoderless act val sensing filter time (processor 2) / SI Mtn SL filt P2
CU240E-2 DP F	Access level: 4 Calculated: - Data type: FloatingPoint32
CU240E-2 F	Can be changed: $\mathrm{C}(95)$ Scaling: - Data set: -
	Units group: - Unit selection: -
	Min Max Factory setting $0.00[\mu \mathrm{~s}]$ $100000.00[\mu \mathrm{~s}]$ $25000.00[\mu \mathrm{~s}]$
Description:	Sets the filter time for smoothing the actual value with sensorless actual value sensing. This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Notice:	
p9388	SI Motion actual value sensing minimum current (processor 2) / SI Mtn SL I_min P2
CU240E-2 DP F	Access level: 3 Calculated: - Data type: FloatingPoint32
CU240E-2 F	Can be changed: $\mathrm{C}(95)$ Scaling: - Data set: -
	Units group: - Unit selection: -
	Min Max Factory setting $0.00[\%]$ 1000.00 [\%] 10.00 [\%]
Description:	Sets the minimum current for encoderless actual value sensing in reference to 10 mA (i.e. when $1 \%=10 \mathrm{~mA}$). - The value must be increased if C30711 has occurred with message value 1042. - The value must be decreased if C30711 has occurred with message value 1041.
Dependency:	Refer to: C30711
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive. Reducing this percentage value can adversely affect actual value sensing.

p9533	SI Motion SLS setpoint speed limit (processor 1) / SI Mtn SLS set_lim
CU240E-2 DP F	Access level: 3 Calculated: - Data type: FloatingPoint32
CU240E-2 F	Can be changed: U, T Scaling: - Data set: -
	Units group: - Unit selection: -
	Min Max Factory setting $0.000[\%]$ $100.000[\%]$ $80.000[\%]$
Description:	This is an evaluation factor to define the setpoint limit from the selected actual speed limit. The active SLS limit value is evaluated with this factor and is made available as setpoint limit in r9733.
Dependency:	This parameter only has to be parameterized for the motion monitoring functions integrated in the drive $(\mathrm{p} 9601.2=$ > 1) r9733[0] $=$ p9531[x] \times p9533 (converted from the load side to the motor side) r9733[1] $=-\mathrm{p} 9531[\mathrm{x}] \times \mathrm{p} 9533$ (converted from the load side to the motor side) $[x]=$ Selected SLS stage Conversion factor from the motor side to the load side: - motor type = rotary and axis type = linear: p9522 / (p9521 x p9520) - otherwise: p9522 / p9521 Refer to: p9501, p9531, p9601
Note:	The active actual speed limit is selected via PROFIsafe. With STOP A, B, setpoint 0 is specified in r 9733 . If p9533 $=0$ is set, the setpoint speed limit is de-activated, and $r 9733[0]=p 1082$ and $r 9733[1]=-p 1082$ are set SLS: Safely-Limited Speed
p9542	SI Motion act. val. comparison tolerance (crossw.) (processor 1) / SI Mtn act tol P1
	Access level: 3 Calculated: - Data type: FloatingPoint32
CU240E-2 DP F	Can be changed: C(95) Scaling: - Data set: -
CU240E-2 F	Units group: - Unit selection: -
	Min Max Factory setting $0.0010\left[^{\circ}\right]$ $360.0000\left[^{\circ}\right]$ $12.0000\left[{ }^{\circ}\right]$
Description: Dependency:	Sets the tolerance for the cross-check of the actual position between processor 1 and processor 2.
p9545	SI Motion SSM filter time (processor 1) / SI Mtn SSM filt P1
PM240	Access level: 3 Calculated: - Data type: FloatingPoint32
PM250	Can be changed: C(95) Scaling: - Data set: -
PM260 CU240E-2 DP F	Units group: - Unit selection: -
	Min Max Factory setting $0.00[\mathrm{~ms}]$ $100.00[\mathrm{~ms}]$ $0.00[\mathrm{~ms}]$
Description: Note:	Sets the filter time for the SSM feedback signal to detect standstill. The filter time is effective only if the function is enabled (p9501.16 = 1). The parameter is included in the crosswise data comparison of the two monitoring channels. SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring)

p9546	SI Motion SSM velocity limit (processor 1) / SI Mtn SSM v_limP1
	Access level: 3 Calculated: - Data type: FloatingPoint32
CU240E-2 DP F	Can be changed: $\mathrm{C}(95)$ Scaling: - Data set: -
CU240E-2 F	Units group: - Unit selection: -
	Min Max Factory setting $0.00[\mathrm{rpm}]$ $100000.00[\mathrm{rpm}]$ $20.00[\mathrm{rpm}]$
Description:	Sets the velocity limit for the SSM feedback signal to detect standstill ($n<n x$). When this limit value is undershot, the signal "SSM feedback signal active" is set.
	The "SAM" function is switched out if the selected threshold value is undershot.
Note:	SAM: Safe Acceleration Monitor (safe acceleration monitoring)
p9547	SI Motion SSM velocity hysteresis (processor 1) / SI Mtn SSM hyst P1
	Access level: 3 Calculated: - Data type: FloatingPoint32
CU240E-2 DP F	Can be changed: C(95) Scaling: - Data set: -
	Units group: - Unit selection: -
	Min Max Factory setting $0.0010[\mathrm{rpm}]$ $500.0000[\mathrm{rpm}]$ $10.0000[\mathrm{rpm}]$
Description:	Sets the velocity hysteresis for the SSM feedback signal to detect standstill ($\mathrm{n}<\mathrm{nx}$).
Dependency:	Refer to: C01711
Note:	The velocity hysteresis is effective only if the function is enabled (p9501.16 = 1). The parameter is included in the crosswise data comparison of the two monitoring channels. SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring)

p9548	SI Motion SAM actual velocity tolerance (Control Unit) / SI Mtn SAM tol CU
	Access level: 3 Calculated: - Data type: FloatingPoint32
CU240E-2 DP F	Can be changed: C(95) Scaling: - Data set:
CU240E-2 F	Units group: - Unit selection: -
	Min Max Factory setting $0.00[\mathrm{rpm}]$ $120000.00[\mathrm{rpm}]$ $300.00[\mathrm{rpm}]$
Description: Dependency: Note:	Sets the velocity tolerance for the "SAM" function. Refer to: C01706 SAM: Safe Acceleration Monitor (safe acceleration monitoring)
p9551	SI Motion SLS changeover delay time (processor 1) / SI Mtn SLS t P1
CU240E-2 DP F	Access level: 3 Calculated: - Data type: FloatingPoint32
CU240E-2 F	Can be changed: C(95) Scaling: - Data set:
	Units group: - Unit selection: -
	Min Max Factory setting $0.00[\mathrm{~ms}]$ $600000.00[\mathrm{~ms}]$ 100.00 [ms]
Description:	Sets the delay time for the SLS changeover for the function "safely limited speed" (SLS). When transitioning from a higher to a lower safely-limited velocity/speed stage, within this delay time, the "old" velocity stage remains active.
	Even if SLS is activated from non safety-related operation, then this delay is still applied.
Note:	SLS: Safely-Limited Speed

p9563[0...3]	SI Motion SLS-specific stop response (processor 1) / SI Mtn SLS stop P1		
CU240E-2 DP F	Access level: 3	Calculated: -	Data type: Integer16
CU240E-2 F	Can be changed: C(95)	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	Max_{1}	Factory setting 0
Description:	Sets the SLS-specific stop response for the function "Safely-Limited Speed" (SLS). These settings apply to the individual limit values for SLS.		
Value:	$\begin{array}{ll}0: & \text { STOP A } \\ \text { 1: } & \text { STOP B }\end{array}$		
Index:	$\begin{aligned} & {[0]=\text { Limit value SLS1 }} \\ & {[1]=\text { Limit value SLS2 }} \\ & {[2]=\text { Limit value SLS3 }} \\ & {[3]=\text { Limit value SLP4 }} \end{aligned}$		
Dependency:	Refer to: p9531		
Note:	SLS: Safely-Limited Speed		
p9564	SI Motion SDI tolerance (processor 1) / SI Mtn SDI tol P1		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
CU240E-2 DP F	Can be changed: C(95)	Scaling: -	Data set: -
CU240E-2 F	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.001\left[^{\circ}\right] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 360.000 \end{aligned}$	Factory setting 12.000 [$^{\circ}$]
Description:	Sets the tolerance for the function "Safe motion direction" (SDI). This motion in the monitored direction is still permissible before an alarm is initiated.		
Dependency:	Refer to: p9565, p9566		
	Refer to: C01716		
Note:	SDI: Safe Direction (safe motion direction)		
p9565	SI Motion SDI delay time (processor 1) / SI Mtn SDI t P1		
CU240E-2 DP F	Access level: 3	Calculated: -	Data type: FloatingPoint32
CU240E-2 F	Can be changed: C(95)	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0.00 \text { [ms] } \end{aligned}$	Max 600000.00 [ms]	Factory setting 100.00 [ms]
Description:	Sets the delay time for the function "Safe motion direction" (SDI). When selecting the SDI function, motion in the monitored direction is permissible as a maximum for this time; this means that this time can be used for braking existing motion.		
Dependency:	Refer to: p9564, p9566		
	Refer to: C01716		
Note:	SDI: Safe Direction (safe motion direction)		

p9566	SI Motion SDI stop response (processor 1) / SI Mtn SDI Stop P1		
CU240E-2 DP F	Access level: 3	Calculated: -	Data type: Integer16
CU240E-2 F	Can be changed: C(95)	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min 0	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 1
Description:	Sets the stop response for the function "Safe motion direction" (SDI). This setting applies to both directions of motion.		
Value:	$\begin{array}{ll} 0: & \text { STOP A } \\ \text { 1: } & \text { STOP B } \end{array}$		
Dependency:	Refer to: p9564, p9565		
	Refer to: C01716		
Note:	SDI: Safe Direction (safe motion direction)		
p9568	SI Motion SAM velocity limit (processor 1) / SI Mtn SAM v_limP1		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
CU240E-2 DP F	Can be changed: C(95)	Scaling: -	Data set: -
CU240E-2 F	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{rpm}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00[\mathrm{rpm}] \end{aligned}$	Factory setting 0.00 [rpm]
Description:	Sets the velocity tolerance limit for the "SAM" function. SAM is de-activated once the set velocity limit has been undershot.		
Note:	SAM: Safe Acceleration SSM: Safe Speed Monito For p9568 = p9368 = 0, The value in p9546/p934	acceleration monit vant feedback sign applies: pplied as the velocit	monitoring)
p9570	SI Motion acceptance test mode (processor 1) / SI Mtn acc_mod P1		
CU240E-2 DP F	Access level: 3	Calculated: -	Data type: Integer16
CU240E-2 F	Can be changed: U, T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min 0000 hex	Max 00AC hex	Factory setting 0000 hex
Description:	Setting to select and de-select the acceptance test mode.		
Value:	0: [00 hex$]$ De-select the acceptance test mode 172: [AC hex] Select the acceptance test mode		
Dependency:	Refer to: p9558, r9571, p9601		
	Refer to: C01799		
Note:	Acceptance test mode can only be selected if the motion monitoring functions, which are integrated in the drives, are enabled (p9601.2/p9801.2).		

r9571	SI Motion acceptance test status (processor 1) / SI Mtn acc_status		
CU240E-2 DP F	Access level: 3	Calculated: -	Data type: Integer16
CU240E-2 F	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min 0000 hex	Max 00AC hex	Factory setting
Description:	Displays the status of the acceptance test mode.		
Value:	0: [00 hex] Acc_mod 12: [OC hex] Acc_mod 13: [OD hex] Acc_mod 15: [OF hex] Acc_mod 172: [AC hex] Acc mod	le due to POWER ble due to incorrect ble due to expired A	
Dependency:	Refer to: p9558, p9570		
	Refer to: C01799		
p9581	SI Motion brake ramp reference value (processor 1) / SI Mtn ramp ref P1		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
CU240E-2 DP F	Can be changed: C(95)	Scaling: -	Data set: -
CU240E-2 F	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 600.0000[\mathrm{rpm}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 24000.0000 \text { [rpm] } \end{aligned}$	Factory setting 1500.0000 [rpm]
Description:	Sets the reference value to define the brake ramp.		
Dependency:	Refer to: p9582, p9583		
p9582	SI Motion brake ramp delay time (processor 1) / SI Mtn ramp t P1		
CU240E-2 DP F	Access level: 3	Calculated: -	Data type: FloatingPoint32
CU240E-2 F	Can be changed: C(95)	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min 10.00 [ms]	$\begin{aligned} & \operatorname{Max} \\ & 99000.00[\mathrm{~ms}] \end{aligned}$	Factory setting 250.00 [ms]
Description:	Sets the delay time for monitoring the brake ramp.		
Dependency:	Refer to: p9581, p9583		
p9583	SI Motion brake ramp monitoring time (processor 1) / SI Mtn rp t_mon P1		
CU240E-2 DP F	Access level: 3	Calculated: -	Data type: FloatingPoint32
CU240E-2 F	Can be changed: C(95)	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.50[s] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000.00 \text { [s] } \end{aligned}$	Factory setting 10.00 [s]
Description:	The rate of rise of the brake ramp depends upon p9581 (reference value) and p9583 (monitoring time).		and p9583 (monitoring time).
Dependency:	Refer to: p9581, p9582		

p9601	SI enable, functions integrated in the drive (processor 1) / SI enable fct P1		
PM240	Access level: $3 \quad$ Calculated: -	Data type:	
PM250	Can be changed: C(95) Scaling: -	Data set:	
PM260	Units group: - Unit selection: -		
CU240E-2 DP			
	$\begin{array}{ll} \text { Min } & \text { Max } \\ - & - \end{array}$	Factory se 0000 bin	
Description:	Sets the enable signals for safety functions on processor 1 that are integrated in the drive. Not all of the settings listed below will be permissible, depending on the Control Unit being used: - p9601 = 0: Safety functions integrated in the drive disabled. - p9601 = 1: STO enabled via terminals. Permissible if r9771.0 $=1$. - p9601 = 4: Motion monitoring functions integrated in the drive enabled via an integrated F-DI. Permissible if r9771.5 = 1 . - p9601 = 8: STO enabled via PROFIsafe. Permissible if r9771.6 = 1 . - p9601 = 9: STO enabled via PROFIsafe and STO via terminals. Permissible if r9771.6 $=1$. - p9601 = 12: Motion monitoring functions integrated in the drive enabled via PROFIsafe. Permissible if r9771.4=1. - p9601 = 13: Motion monitoring functions integrated in the drive enabled via PROFIsafe and STO via terminals. Permissible if r9771.4 = 1 .		
Bit field:	Bit Signal name 1 signal 00 Enable STO via terminals (processor 1) Enable 03 Enable PROFIsafe (processor 1) Enable	0 signal Inhibit Inhibit	$\begin{aligned} & \text { FP } \\ & 2810 \end{aligned}$
Dependency: Note:	Refer to: r9771, p9801 A change only becomes effective after a POWER ON. F-DI: Failsafe Digital Input. STO: Safe Torque Off		

p9601	SI enable, functions integrated in the drive (processor 1) / SI enable fct P1
PM240	Access level: 3 Calculated: - Data type: Unsigned32
PM250	Can be changed: C(95) Scaling: - Data set: -
PM260	Units group: - Unit selection: -
	Min Max Factory setting $-\quad 0000$ bin
Description:	Sets the enable signals for safety functions on processor 1 that are integrated in the drive. Not all of the settings listed below will be permissible, depending on the Control Unit being used: - p9601 = 0: Safety functions integrated in the drive disabled. - p9601 = 1: STO enabled via terminals. Permissible if r9771.0 $=1$. - p9601 = 4: Motion monitoring functions integrated in the drive enabled via an integrated F-DI. Permissible if r9771.5 = 1 . - p9601 = 8: STO enabled via PROFIsafe. Permissible if r9771.6 $=1$. - p9601 = 9: STO enabled via PROFIsafe and STO via terminals. Permissible if r9771.6 = 1. - p9601 = 12: Motion monitoring functions integrated in the drive enabled via PROFIsafe. Permissible if r9771.4 = 1. - p9601 = 13: Motion monitoring functions integrated in the drive enabled via PROFIsafe and STO via terminals. Permissible if r9771.4 = 1 .
Bit field:	Bit Signal name $\mathbf{1}$ signal $\mathbf{0}$ signal FP 00 Enable STO via terminals (processor 1) Enable Inhibit 2810 02 Motion monitoring functions integr. in the Enable Inhibit - drive (processor 1)
Dependency: Note:	Refer to: r9771, p9801 A change only becomes effective after a POWER ON. F-DI: Failsafe Digital Input. STO: Safe Torque Off
p9610	SI PROFIsafe address (processor 1) / SI PROFIsafe P1
CU240E-2 DP	Access level: 3 Calculated: - Data type: Unsigned16
CU240E-2 DP F	Can be changed: $\mathrm{C}(95)$ Scaling: - Data set: - Units group: - Unit selection: -
	Min Max Factory setting 0000 hex FFFE hex 0000 hex
Description: Dependency:	Sets the PROFIsafe address for processor 1. Refer to: p9810
p9650	SI F-DI changeover tolerance time (processor 1) / SI F-DI_chg tol P1
CU240E-2	Access level: 3 Calculated: - Data type: FloatingPoint32
CU240E-2 DP	Can be changed: C(95) Scaling: - Data set:
CU240E-2 DP F CU240E-2 F	Units group: - Unit selection: -
	Min Max Factory setting $0.00[\mathrm{~ms}]$ $2000.00[\mathrm{~ms}]$ $500.00[\mathrm{~ms}]$
Description:	Sets the tolerance time for the changeover of the failsafe digital input for STO on processor 1. An F-DI changeover is not effective simultaneously due to the different runtimes in the two monitoring channels. After an F-DI changeover, dynamic data is not subject to a crosswise data comparison during this tolerance time.
Dependency:	Refer to: p9850
Note:	For a crosswise data comparison between p9650 and p9850, a difference of one Safety monitoring clock cycle is tolerated. The parameterized time is internally rounded-off to an integer multiple of the monitoring clock cycle. F-DI: Failsafe Digital Input

p9651	SI STO debounce time (processor 1) / SI STO t_debou P1		
CU240E-2	Access level: 3	Calculated: -	Data type: FloatingPoint32
CU240E-2 DP	Can be changed: C(95)	Scaling: -	Data set: -
CU240E-2 DP F	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0.00 \text { [ms] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.00 \text { [ms] } \end{aligned}$	Factory setting 1.00 [ms]
Description:	Sets the debounce time for the failsafe digital inputs used to control the "STO" function. The debounce time is rounded to whole milliseconds.		
Note:	The debounce time is rounded to whole milliseconds. It specifies the maximum duration of a fault pulse at the failsafe digital inputs with no reaction/influence on the selection or deselection of the Safety Basic Functions. Example: Debounce time $=1 \mathrm{~ms}$: Fault pulses of 1 ms are filtered; only pulses longer than 2 ms are processed. Debounce time $=3 \mathrm{~ms}$: Fault pulses of 3 ms are filtered; only pulses longer than 4 ms are processed.		
p9659	SI forced checking procedure timer / SI FrcdCkProcTimer		
CU240E-2	Access level: 3	Calculated: -	Data type: FloatingPoint32
CU240E-2 DP	Can be changed: C(95)	Scaling: -	Data set: -
CU240E-2 DP F CU240E-2 F	Units group: -	Unit selection: -	
	$\operatorname{Min}_{0.00}$	$\begin{aligned} & \text { Max } \\ & 9000.00[h] \end{aligned}$	Factory setting 8.00 [h]
Description:	Sets the time interval for carrying out the forced checking procedure and testing the Safety shutdown paths. Within the parameterized time, STO must have been de-selected at least once. The monitoring time is reset each time that STO is de-selected.		
Dependency:	Refer to: A01699		
Note:	STO: Safe Torque Off		
r9660	SI forced checking procedure remaining time / SI frc chk remain		
CU240E-2	Access level: 3	Calculated: -	Data type: FloatingPoint32
CU240E-2 DP	Can be changed: -	Scaling: -	Data set: -
$\begin{aligned} & \text { CU240E-2 DP F } \\ & \text { CU240E-2 F } \end{aligned}$	Units group: -	Unit selection: -	
	$\underset{-[h]}{\operatorname{Min}}$	$\begin{gathered} \text { Max } \\ -[\mathrm{h}] \end{gathered}$	Factory setting - [h]
Description:	Displays the time remaining before dynamization and testing of the safety shutdown paths (forced checking procedure).		
Dependency:	Refer to: A01699		

r9710[0...1]	SI Motion diagnostics result list 1 / SI Mtn res_list 1					
CU240E-2 DP F	Acc	ss level: 3	Calculated: -		Data type: Unsigned32	
CU240E-2 F		be changed: -	Scaling: -		Data set: -	
	Uni	group: -	Unit selection: -			
	Min		Max		Factory se	
	-		-		-	
Description: Index:	Displays result list 1 that, for the crosswise data comparison between the monitoring channels, led to the fault. [0] = Result list processor 2					
Bit field:		Signal name		1 signal	0 signal	FP
		Actual value >		Yes	No	-
		Actual value $>$		Yes	No	-
		Actual value $>$		Yes	No	-
		Actual value $>$		Yes	No	-
		Actual value $>$		Yes	No	-
		Actual value $>$		Yes	No	-
		Actual value $>$		Yes	No	-
		Actual value $>$		Yes	No	-
		Actual value $>$	SBR	Yes	No	-
		Actual value $>$	SBR	Yes	No	-
		Actual value $>$	ositive	Yes	No	-
		Actual value $>$	ositive	Yes	No	-
		Actual value $>$	egative	Yes	No	-
		Actual value >	gative	Yes	No	-
Dependency:	Refer to: C01711					
Note:	SAM: Safe Acceleration Monitor (safe acceleration monitoring)					
	SBR: Safe Brake Ramp (safe brake ramp monitoring)					
	SLS: Safely-Limited Speed					
r9712	SI Motion diagnostics pos. act. val. motor side (processor 1) / SI Mtn s_act motP1					
CU240E-2 DP F	Access level: 3		Calculated: -		Data type: Unsigned32	
CU240E-2 F	Can	be changed: -	Scaling: -		Data set: -	
	Uni	group: -	Unit selection: -			
	Min		Max		Factory se	
Description:	Displays the current motor-side position actual value for the motion monitoring functions on processor 1.					

r9720.0... 13	CO/BO: SI Motion control signals integrated in the drive / SI Mtn integ STW			
CU240E-2 DP F	Access level: 3	Calculated: -	Data type: Unsigned32	
CU240E-2 F	Can be changed: -	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min	Max	Factory setting	
	-	-		
Description:	Control signals for safety-relevant motion monitoring functions integrated in the drive.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 De-select STO	Yes	No	-
	01 De-select SS1	Yes	No	-
	04 De-select SLS	Yes	No	-
	07 Acknowledgement	Signal edge active	No	-
	09 Select SLS bit 0	Set	Not set	-
	10 Select SLS bit 1	Set	Not set	-
	12 Deselect SDI positive	Yes	No	2861
	13 Deselect SDI negative	Yes	No	2861

Note: \quad This parameter is only supplied with actual values if SI Motion functions are active. For Safety Integrated Basic Functions (STO), the value is equal to zero.

r9722.0... 15	CO/BO: SI Motion status signals integrated in the drive / SI Mtn integ stat			
CU240E-2 DP F	Access level: 3	Calculated: -	Data type: Unsigned32	
	Can be changed: -	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min	Max	Factory setting	
	-	-		
Description:	Status signal for safety-relevant motion monitoring functions integrated in the drive.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 STO active	Yes	No	-
	01 SS1 active	Yes	No	-
	04 SLS active	Yes	No	-
	07 Internal event	No	Yes	-
	09 Active SLS stage bit 0	Set	Not set	-
	10 Active SLS stage bit 1	Set	Not set	-
	12 SDI pos active	Yes	No	2861
	13 SDI neg active	Yes	No	2861
	15 SSM (speed below limit value)	Yes	No	2860
Notice:	Re bit 07:			
	An internal event is displayed if a STOP A ... F is active.			
	The signal state behaves in an opposite way to the PROFIsafe Standard.			
Note:	This parameter is only supplied with actual values if SI Motion functions are active. For Safety Integrated Basic Functions (STO), the value is equal to zero.			
r9722.0... 13	CO/BO: SI Motion status signals integrated in the drive / SI Mtn integ stat			
CU240E-2 F	Access level: 3	Calculated: -	Data type: Unsigned32	
	Can be changed: -	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min	Max	Factory setting	
	-			
Description: Status signal for safety-relevant motion monitoring functions integrated in the drive.				
Bit field:	Status signal for safety-relevant motion monitoring functions integrated in the drive.			FP
	00 STO active	Yes	No	-
	01 SS1 active	Yes	No	-
	04 SLS active	Yes	No	-
	07 Internal event	No	Yes	-
	09 Active SLS stage bit 0	Set	Not set	-
	10 Active SLS stage bit 1	Set	Not set	-
	12 SDI pos active	Yes	No	2861
	13 SDI neg active	Yes	No	2861
Notice:	Re bit 07:			
	An internal event is displayed if a STOP A ... F is active.			
	The signal state behaves in an opposite way to the PROFIsafe Standard.			
Note:	This parameter is only supplied with actual values if SI Motion functions are active. For Safety Integrated Basic Functions (STO), the value is equal to zero.			

r9723.0... 16	CO/BO: SI Motion diagnostic signals integrated in the drive / SI Mtn integ diag			
CU240E-2 DP F CU240E-2 F	Access level: 3 Calculated	Calculated: - Scaling: Unit selection:	Data type: Unsigned32	
	Can be changed: - Scaling: -		Data set: -	
	Units group: - Unit select			
	Min Max		Factory set	
Description: Bit field:	Displays the diagnostic signals for safety-relevant motion monitoring functions integrated in the drive.			
	Bit Signal name	1 signal	0 signal	FP
	00 Forced checking procedure required	Yes	No	-
	01 For ESR, STOP F and subsequent stop B is active	Yes	No	-
	02 Communication failure	Yes	No	-
	03 Actual value sensing supplies valid value	Yes	No	
	04 Encoderless act val sensing acc to technique for U/f control	Yes	No	-
	16 SAM/SBR active	Yes	No	-
Note:	ESR: Extended Stop and Retract SAM: Safe Acceleration Monitor (safe acceleration monitoring) SBR: Safe Brake Ramp (safe brake ramp monitoring)			
r9724 CU240E-2 DP F CU240E-2 F	SI Motion crosswise comparison clock cycle / SI Mtn CDC clk cyc			
		Calculated: -	Data type: FloatingPoint32	
	Can be changed: - Scaling:		Data set: -	
	Units group: - Unit selection: -			
	Min Max $-[\mathrm{ms}]$ $-[\mathrm{ms}]$	Max - [ms]	Factory setting - [ms]	
Description:	Displays the crosswise comparison clock cycle. The value indicates the clock cycle time with which each individual CDC value is compared between the two monitoring channels.			
Note:	CDC: Crosswise Data Check			

r9725[0...2]	SI Motion, diagnostics STOP F / SI Mtn Diag STOP F		
CU240E-2 DP F	Access level: 3	Calculated: -	Data type: Unsigned32
CU240E-2 F	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selectio	
	Min	Max	Factory setting
	-	-	
Description:	Re index 0 :		
	Displays the message value that resulted in the STOP F on the drive.		
	Value $=0$:		
	Processor 1 signaled a STOP F.		
	Value = $1 . . .999$:		
	Number of the incorrect date in the crosswise data comparison between the monitoring channels. Value >= 1000:		
	Additional diagnostic values of the drive.		
	Re index 1:		
	Displays the value from processor 1 that resulted in the STOP F.		
	Re index 2:		
	Displays the value from processor 2 that resulted in the STOP F.		
Index:	$\begin{aligned} & {[0]=\text { Message value }} \\ & {[1]=\text { Processor } 1 \mathrm{CD}} \\ & \text { [2] = Processor } 2 \mathrm{CD} \end{aligned}$		
Dependency:	Refer to: C01711		
Note:	The significance of the individual message values is described in message C01711.		

p9763	SI password acknowledgement / SI ackn password			
CU240E-2	Access level: 3	Calculated: -	Data type:	
CU240E-2 DP	Can be changed: C(95)	Scaling: -	Data set: -	
CU240E-2 DP F	Units group: -	Unit selection: -		
	Min 0000 hex	Max FFFF FFFF hex	Factory se 0000 hex	
Description: Dependency: Note:	The new password entered into p9762 must be re-entered in order to acknowledge. p9762 $=$ p9763 $=0$ is automatically set after the new Safety Integrated password has been successfully acknowledged.			
r9765	SI Motion forced checking procedure remaining time (processor 1) I SI Mtn dyn rem P1			
CU240E-2 DP F	Access level: 3	Calculated: -	Data type:	
CU240E-2 F	Can be changed: -	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	$\begin{gathered} \operatorname{Min} \\ -[\mathrm{h}] \end{gathered}$	$\operatorname{Max}_{-[\mathrm{h}]}$	Factory se - [h]	
Description:	Displays the time remaining until the next dynamization and testing of the safety motion monitoring functions integrated in the drives.			
Dependency:				
r9770[0...3]	SI version drive-integrated safety function (processor 1) / SI version Drv P1			
CU240E-2	Access level: 3	Calculated: -	Data type:	
CU240E-2 DP	Can be changed: -	Scaling: -	Data set: -	
$\begin{aligned} & \text { CU240E-2 DP F } \\ & \text { CU240E-2 F } \end{aligned}$	Units group: -	Unit selection: -		
	Min	Max	Factory se	
Description: Index:	Displays the Safety Integrated version for the drive-integrated safety functions on processor 1. [0] = Safety Version (major release) [1] = Safety Version (minor release) [2] = Safety Version (baselevel or patch) [3] = Safety Version (hotfix)			
Note:	r9770[0] $=2, r 9770[1]=60, r 9770[2]=1, r 9770[3]=0$--> Safety version V02.60.01.00			
r9771	SI common functions (processor 1) / SI general fct P1			
CU240E-2	Access level: 3	Calculated: -	Data type:	
	Can be changed: -	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min	Max	Factory se	
Description:	Displays the supported Safety Integrated monitoring functions. Processor 1 determines this display.			
Bit field:	Bit Signal name 00 STO supported via terminals	1 signal Yes	0 signal No	$\begin{aligned} & \text { FP } \\ & 2804 \end{aligned}$
Dependency:	Refer to: r9871STO: Safe Torque Off			
Note:				

r9776
CU240E-2
CU240E-2 DP
CU240E-2 DP F
CU240E-2 F
Description:

Bit field:

Note:

SI diagnostics / SI diagnostics

-

r9780	SI monitoring clock cycle (processor 1) / SI mon_clk cyc P1		
CU240E-2	Access level: 3	Calculated: -	Data type: Floatin
CU240E-2 DP	Can be changed: -	Scaling: -	Data set: -
CU240E-2 DP F	Units group: -	Unit selection: -	
CU240E-2 F			
	Min - [ms]	Max - [ms]	Factory setting - [ms]
Description:	Displays the clock cycle time for the Safety Integrated Basic Functions on processor 1.		

r9782[0...1]	Sl time stamp to check changes (processor 1)/SI chg t P1		
CU240E-2	Access level: 3	Calculated: -	Data type: FloatingPoint32
CU240E-2 DP	Can be changed: -	Scaling: -	Data set: -
CU240E-2 DP F	Units group: -	Unit selection: -	
CU240E-2 F			

r9794[0...19]	SI crosswise comparison list (processor 1) / SI CDC_list P1		
CU240E-2	Access level: 3	Calculated: -	Data type: Unsigned16
CU240E-2 DP	Can be changed: -	Scaling: -	Data set: -
CU240E-2 DP F	Units group: -	Unit selection: -	
CU240E-2 F			
	Min	Max	Factory setting
Description:	Displays the numbers of the data items that are currently being compared crosswise on processor 1. The content of the list of crosswise-compared data is dependent upon the particular application.		
Note:	Example:		
	r9794[0] = 1 (monitoring clock cycle)		
	$\mathrm{r9794}$ [1] $=2$ (enable safety functions)		
	r9794[2] = 3 (F-DI changeover, tolerance time)		
	...		
	A complete list of numbers for crosswise-compared data items appears in fault F01611.		
r9795	SI diagnostics STOP F (processor 1) / SI diag STOP F P1		
CU240E-2	Access level: 2	Calculated: -	Data type: Unsigned32
CU240E-2 DP	Can be changed: -	Scaling: -	Data set: -
CU240E-2 F	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of the cross-checked data item which caused STOP F on processor 1.		
Dependency:	Refer to: F01611		
Note:	A complete list of numbers for crosswise-compared data items appears in fault F01611.		
r9798	SI actual checksum SI parameters (processor 1) / SI act chksm P1		
CU240E-2	Access level: 3	Calculated: -	Data type: Unsigned32
CU240E-2 DP	Can be changed: -	Scaling: -	Data set: -
CU240E-2 DP F	Units group: -	Unit selection: -	
CU240E-2 F			
	Min	Max	Factory setting
Description:	Displays the checksum for the Safety Integrated parameters checked using checksums on processor 1 (actual checksum).		
Dependency:	Refer to: p9799, r9898		
p9799	SI setpoint checksum SI parameters (processor 1) / SI setp_chksm P1		
CU240E-2	Access level: 3	Calculated: -	Data type: Unsigned32
CU240E-2 DP	Can be changed: C(95)	Scaling: -	Data set: -
CU240E-2 DP F	Units group: -	Unit selection: -	
CU240E-2 F			
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description:	Sets the checksum for the Safety Integrated parameters checked using checksums on processor 1 (setpoint checksum).		
Dependency:	Refer to: r9798, p9899		

p9801	SI enable, functions integrated in the drive (processor 2) / SI enable fct P2
PM240	Access level: 3 Calculated: - Data type: Unsigned16
PM250	Can be changed: C(95) Scaling: - Data set: -
PM260	Units group: - Unit selection: -
CU240E-2	
	Min Max Factory setting 0000 bin
Description:	Sets the enable signals for safety functions on processor 2 that are integrated in the drive. Not all of the settings listed below will be permissible, depending on the Control Unit being used: - p9801 = 0: Safety functions integrated in the drive disabled. - p9801 = 1: STO enabled via terminals. Permissible if r9871.0 $=1$. - p9801 = 4: Motion monitoring functions integrated in the drive enabled via an integrated F-DI. Permissible if r9871.5 = 1 . - p9801 = 8: STO enabled via PROFIsafe. Permissible if r9871.6 = 1. - p9801 = 9: STO enabled via PROFIsafe and STO via terminals. Permissible if r9871.6 $=1$. - p9801 = 12: Motion monitoring functions integrated in the drive enabled via PROFIsafe. Permissible if r9871.4 = 1. - p9801 = 13: Motion monitoring functions integrated in the drive enabled via PROFIsafe and STO via terminals. Permissible if $\mathrm{r} 9871.4=1$.
Bit field:	Bit Signal name $\mathbf{1}$ signal $\mathbf{0}$ signal 00 Enable STO via terminals (processor 2) Enable Inhibit
Dependency: Notice: Note:	Refer to: p9601, r9871 This parameter is overwritten by the copy function of the safety functions integrated in the drive. A change only becomes effective after a POWER ON. F-DI: Failsafe Digital Input. STO: Safe Torque Off
p9801	SI enable, functions integrated in the drive (processor 2) / Sl enable fct P2
PM240	Access level: 3 Calculated: - Data type: Unsigned16
PM250	Can be changed: C(95) Scaling: - Data set: -
PM260	Units group: - Unit selection: -
CU240E-2 DP	Min Max Factory setting 0000 bin
Description:	Sets the enable signals for safety functions on processor 2 that are integrated in the drive. Not all of the settings listed below will be permissible, depending on the Control Unit being used: - p9801 = 0: Safety functions integrated in the drive disabled. - p9801 = 1: STO enabled via terminals. Permissible if r9871.0 $=1$. - p9801 = 4: Motion monitoring functions integrated in the drive enabled via an integrated F-DI. Permissible if r9871.5 = 1 . - p9801 = 8: STO enabled via PROFIsafe. Permissible if r9871.6 $=1$. - p9801 = 9: STO enabled via PROFIsafe and STO via terminals. Permissible if r9871.6 $=1$. - p9801 = 12: Motion monitoring functions integrated in the drive enabled via PROFIsafe. Permissible if r9871.4 = 1 . - p9801 = 13: Motion monitoring functions integrated in the drive enabled via PROFIsafe and STO via terminals. Permissible if $\mathrm{r} 9871.4=1$.
Bit field:	Bit Signal name $\mathbf{1}$ signal $\mathbf{0}$ signal FP 00 Enable STO via terminals (processor 2) Enable Inhibit 2810 03 Enable PROFIsafe (processor 2) Enable Inhibit -
Dependency: Notice: Note:	Refer to: p9601, r9871 This parameter is overwritten by the copy function of the safety functions integrated in the drive. A change only becomes effective after a POWER ON. F-DI: Failsafe Digital Input. STO: Safe Torque Off

p10017	SI digital inputs debounce time (processor 1) / SI DI t_debounceP1
CU240E-2 DP F	Access level: 3 Calculated: - Data type: FloatingPoint32
CU240E-2 F	Can be changed: $\mathrm{C}(95)$ Scaling: - Data set: -
	Units group: - Unit selection: -
	Min Max Factory setting $0.00[\mathrm{~ms}]$ $100.00[\mathrm{~ms}]$ $1.00[\mathrm{~ms}]$
Description:	Sets the debounce time for digital inputs. The debounce time is accepted rounded off to whole milliseconds. The debounce time acts on the following digital inputs: - Fail-safe digital inputs (F-DI). - Single-channel digital inputs (DI). - Single-channel digital input 2 (DI 2, read back input for the forced checking procedure).
Dependency:	Refer to: p10117
Note:	Example: Debounce time $=1 \mathrm{~ms}$: Fault pulses of 1 ms are filtered; only pulses longer than 2 ms are processed. Debounce time $=3 \mathrm{~ms}$: Fault pulses of 3 ms are filtered; only pulses longer than 4 ms are processed. The debounce result can be read in r10051.

p10026	SI SLS input terminal (processor 1) / SI SLS F-DI P1	
CU240E-2 DP F	Access level: $3 \quad$ Calculated: -	Data type: Integer16
CU240E-2 F	Can be changed: C(95) Scaling: -	Data set: -
	Units group: - Unit selection: -	
	Min Max 0 255	Factory setting 0
Description: Value:	```Statically active F-DI 0 F-DI 1 F-DI 2 255: Statically inact Refer to: p10126 If value \(=0\) : No terminal assigned, safety function always active. If value \(=255\) : No terminal assigned, safety function always inactive. F-DI: Failsafe Digital Input SLS: Safely-Limited Speed```	
Dependency: Note:		
p10030	SI SDI positive input terminal (processor 1) / SI SDI pos F-DI P1	
CU240E-2 DP F	Access level: 3 Calculated: -	Data type: Integer16
CU240E-2 F	Can be changed: C(95) Scaling: -	Data set: -
	Units group: - Unit selection: -	
	Min Max 2 0 255	Factory setting 0
Description: Value:	0 : \quad Statically active F-DI 0 F-DI 1 F-DI 2 255: Statically inact If value $=0$: No terminal assigned, safety function always active. If value $=255$: No terminal assigned, safety function always inactive. F-DI: Failsafe Digital Input SDI: Safe Direction (safe motion direction)	
Note:		
p10031	SI SDI negative input terminal (processor 1) / SI SDI neg F-DI P1	
CU240E-2 DP F	Access level: $3 \quad$ Calculated: -	Data type: Integer16
CU240E-2 F	Can be changed: C(95) Scaling: -	Data set: -
	Units group: - Unit selection: -	
	Min Max 0 255	Factory setting 0
Description: Value:	0: Statically active 1: F-DI 0 2: F-DI 1 3: F-DI 2 255: Statically inact	
Note:	No terminal assigned, safety function always active. If value $=255$: No terminal assigned, safety function always inactive. F-DI: Failsafe Digital Input SDI: Safe Direction (safe motion direction)	

r10049	SI F-DI monitoring status (processor 1) / SI F-DI status P1			
CU240E-2 DP F	Access level: 3	Calculated: -	Data type: Unsigne	
CU240E-2 F	Can be changed: -	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min	Max	Factory setting	
	-	-		
Description:	Displays the monitoring status of the fail-safe digital inputs (F-DI).			
	The F-DIs that are being used by the Safety Integrated functions are displayed.			
	If the module used has fewer than 3 F-DIs, "Freely available" is displayed for the F-DIs which are not in use.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 F-DI 0	Safety monitored	Freely available	-
	01 F-DI 1	Safety monitored	Freely available	-
	02 F-DI 2	Safety monitored	Freely available	-
Dependency:	p10006 / p10106			
	p10022 / p10122			
	p10023 / p10123			
	p10026 / p10126			
	p10030 / p10130			
	p10031 / p10131			
	p10050 / p10150			
	Refer to: r10149			
p10050	SI PROFIsafe F-DI ti	processor 1) / SI Ps F-DI		
CU240E-2 DP F	Access level: 3 Calculated: -		Data type: Unsigned32	
	Can be changed: C(95)	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min	Max	Factory setting	
	-		0000 bin	
Description:	Setting for the transfer and evaluation of failsafe digital inputs (F-DI) via PROFIsafe.			
	The safe state of the selected F-DIs is transferred to the F-control via PROFIsafe. The F-DIs are monitored for discrepancies. Discrepancy faults can be acknowledged via PROFIsafe.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 F-DI 0	Transfer	No transfer	-
	01 F-DI 1	Transfer	No transfer	-
	02 F-DI 2	Transfer	No transfer	-
Dependency:	Refer to: p10150			
Note:	F-DI: Failsafe Digital Input			

p10123	SI SS1 input terminal (processor 2) / SI SS1 F-DI P2	
CU240E-2 DP F	Access level: 3 Calculated: -	Data type: Integer16
CU240E-2 F	Can be changed: C(95) Scaling: -	Data set: -
	Units group: - Unit selection: -	
	Min Max 0 255	Factory setting 0
Description:	Sets the fail-safe digital input (F-DI) for the "SS1" function.	
Value:	0: Statically active 1: F-DI 0 2: F-DI 1 3: F-DI 2 255: Statically inact	
Dependency:	Refer to: p10023	
Note:	If value $=0$: No terminal assigned, safety function always active. If value $=255$: No terminal assigned, safety function always inactive. F-DI: Failsafe Digital Input SS1: Safe Stop 1	
p10126	SI SLS input terminal (processor 2) / SI SLS F-DI P2	
CU240E-2 DP F	Access level: 3 Calculated: -	Data type: Integer16
CU240E-2 F	Can be changed: C(95) Scaling: -	Data set: -
	Units group: - Unit selection: -	
	Min Max 0 255	Factory setting 0
Description:	Sets the fail-safe digital input (F-DI) for the "SLS" function.	
Value:	0: Statically active 1: F-DI 0 2: F-DI 1 3: F-DI 2 255: Statically inact	
Dependency:	Refer to: p10026	
Note:	If value $=0$: No terminal assigned, safety function always active. If value $=255$: No terminal assigned, safety function always inactive. F-DI: Failsafe Digital Input SLS: Safely-Limited Speed	

r10149	SI F-DI monitoring status (processor 2) / SI F-DI status P2			
CU240E-2 DP F	Access level: 3	Calculated: -	Data type: Unsigned32	
CU240E-2 F	Can be changed: -	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min		Factory setting	
	-			
Description:	Displays the monitoring status of the fail-safe digital inputs (F-DI).			
	The F-DIs that are being used by the Safety Integrated functions are displayed.			
	If the module used has fewer than 3 F-DIs, "Freely available" is displayed for the F-DIs which are not in use.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 F-DI 0	Safety monitored	Freely available	
	01 F-DI 1	Safety monitored	Freely available	-
	02 F-DI 2	Safety monitored	Freely available	-
Dependency:	p10006 / p10106			
	p10022 / p10122			
	p10023 / p10123			
	p10026 / p10126			
	p10030 / p10130			
	p10031 / p10131			
	p10050 / p10150			
	Refer to: r10049			
p10150	SI PROFIsafe F-DI ti	processor 2) / SI Ps F-DI	P2	
CU240E-2 DP F	Access level: 3 Calculated: -		Data type: Unsigned32	
	Can be changed: C(95) Scaling:		Data set: -	
	Units group: - Unit selection:			
	Min-	Max	Factory setting 0000 bin	
Description:	Setting for the transfer and evaluation of failsafe digital inputs (F-DI) via PROFIsafe.			
	The safe state of the selected F-DIs is transferred to the F-control via PROFIsafe. The F-DIs are monitored for discrepancies. Discrepancy faults can be acknowledged via PROFIsafe.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 F-DI 0	Transfer	No transfer	-
	01 F-DI 1	Transfer	No transfer	-
	02 F-DI 2	Transfer	No transfer	-
Dependency:	Refer to: p10050			
Note:	F-DI: Failsafe Digital Input			

r10151.0... 2	CO/BO: SI digital inputs status (processor 2) / SI Dl status P2			
CU240E-2 DP F	Access level: 3	Calculated: -	Data type:	
CU240E-2 F	Can be changed: -	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min	Max	Factory set	
	-	-		
Description:	Displays the single-channel, logical, and debounced status of the fail-safe digital inputs (F-DI). The parameter is updated in the SI Motion monitoring clock cycle.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 F-DI 0	High	Low	-
	01 F-DI 1	High	Low	-
	02 F-DI 2	High	Low	-
Dependency:	Refer to: p9501, p9601, p10117, p10150			
Note:	F-DI: Failsafe Digital Input			
	If a safety function is assigned to an input (e.g. via p10122), then the following applies:			
	- logical "0": Safety function is selected			
	- logical "1": Safety function is de-selected			
	The interrelationship between the logical level and the external voltage level at the input depends on the parameterization (refer to p10140) of the input as either NC or NO contact and is aligned to the use of a safety function:			
	With 24 V at the input, NC contacts have a logical "1" level, for 0 V at the input, a logical " 0 " level.			
	This means that an NC/NC contact parameterization of 0 V at both inputs of the F-DI selects the safety function, fo 24 V at both inputs, de-selects the safety function.			
	With 24 V at the input, NO contacts have a logical "0" level, for 0 V at the input, a logical "1" level.			
	This means that for an NC/NO contact parameterization, the level $0 \mathrm{~V} / 24 \mathrm{~V}$ selects the safety function, the level 24 V/O V de-selects the safety function.			
	The state of parameter r10151 is delayed by one monitoring clock cycle in relation to r10051.			
	The parameter is only updated in the following cases:			
	- If the Safety Extended Functions are enabled by means of activation via F-DI.			
	- If transfer of the F-DIs via PROFIsafe is enabled (see p9501).			
	In this case only the F-DIs transferred for PROFIsafe are displayed and updated (see p10050/p10150). All F-DIs which have not been transferred have a static zero value.			
r20001[0...9]	Run-time group sampling time / RTG sampling time			
	Access level: 3	Calculated: -	Data type: FloatingPoint32	
	Can be changed: -	Scaling: -	Data set: -	
	Units group: -	Unit selection: -		
	Min - [ms]	Max - [ms]	Factory setting - [ms]	
Description:	Displays the current sampling time of the run-time group 0 to 9 .			
Index:	[0] = Run-time group 0			
	[1] = Run-time group 1			
	[2] = Run-time group 2			
	[3] = Run-time group 3			
	[4] = Run-time group 4			
	[5] = Run-time group 5			
	[6] = Run-time group 6			
	[7] = Run-time group 7			
	[8] = Run-time group 8			
	[9] = Run-time group 9			

p20038[0...3]	BI: AND 2 inputs / AND 2 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Index:	Sets the signal sourc [0] = Input IO [1] = Input I1 [2] = Input I2 [3] = Input I3	ies $10,11,12,13$ of in	e AND function block.
r20039	BO: AND 2 output Q / AND 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity $\mathrm{Q}=10$ \& 11 \& 12 \& 13 of instance AND 2 of the AND function block		
p20040	AND 2 run-time group / AND 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance AND 2 of the AND function block is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20041	AND 2 run sequence / AND 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	Max 32000	Factory setting 30
Description:	Setting parameter for the run sequence of instance AND 2 within the run-time group set in p20040.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20054[0...3]	BI: OR 2 inputs / OR 2 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal source of input quantities $10,11, I 2, I 3$ of instance OR 2 of the OR function block.		
Index:	$\begin{aligned} & {[0]=\text { Input IO }} \\ & {[1]=\text { Input II }} \\ & {[2]=\text { Input I2 }} \\ & {[3]=\text { Input I3 }} \end{aligned}$		

r20055	BO: OR 2 output Q / OR 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	-	-	
	Display parameter for binary quantity $Q=10\|I 1\| I 2 \mid I 3$ of instance OR 2 of the OR function block.		

p20056	OR 2 run-time group / OR 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance OR 2 of the OR function block is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	Run-time group 3		
	Run-time group 4		
	Run-time group 5		
	Run-time group 6		
	Do not calculate		

p20057	OR 2 run sequence / OR 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	32000	Factory setting
	0	80	
Description:	Setting parameter for the run sequence of instance OR 2 within the run-time group set in p20056.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run		
	sequence value.		

p20066[0...3]	BI: XOR 1 inputs / XOR 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Index:	Sets the signal sourc [0] = Input IO [1] = Input I1 [2] = Input I2 [3] = Input I3	ties IO, I1, I2, I3 of in	he XOR function block.
r20067	BO: XOR 1 output Q / XOR 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity Q of instance XOR 1 of the XOR function block.		
p20068	XOR 1 run-time group / XOR 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min 1	$\begin{aligned} & \text { Max } \\ & 9999 \end{aligned}$	Factory setting 9999
Description:	Setting parameter for the run-time group in which the instance XOR 1 of the XOR function block is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20069	XOR 1 run sequence / XOR 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 32000 \end{aligned}$	Factory setting 120
Description:	Setting parameter for the run sequence of instance XOR 1 within the run-time group set in p20068.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

r20079	BO: NOT 0 inverted output / NOT 0 inv output		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for the inverted output of instance NOT 0 of the inverter.		
p20080	NOT 0 run-time group / NOT 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 9999 \end{aligned}$	Factory setting 9999
Description:	Setting parameter for the run-time group in which the instance NOT 0 of the inverter is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20081	NOT 0 run sequence I NOT 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 32000 \end{aligned}$	Factory setting 160
Description:	Setting parameter for the run sequence of instance NOT 0 within the run-time group set in p20080.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20082	BI: NOT 1 input I / NOT 1 input I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal sourc	ty I of instance NOT	
r20083	BO: NOT 1 inverted output / NOT 1 inv output		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for the inverted output of instance NOT 1 of the inverter.		

p20084	NOT 1 run-time group / NOT 1 RTG				
	Access level: 3	Calculated: -	Data type: Integer16		
	Can be changed: T	Scaling: -	Data set: -		
	Units group: -	Unit selection: -			
	Min	Max	Factory setting		
	Setting parameter for the run-time group in which the instance NOT 1 of the inverter is to be called.				
Value:					
	3: Run-time group 3				
	4: Run-time group 4				
	5: Run-time group 5				
	$\begin{array}{ll}\text { 6: } & \text { Run-time group } 6 \\ \text { 9999. } & \text { Do not calculate }\end{array}$				
p20085	NOT 1 run sequence / NOT 1 RunSeq				
	Access level: 3	Calculated: -	Data type: Unsigned16		
	Can be changed: T	Scaling: -	Data set: -		
	Units group: -	Unit selection: -			
	Min0	Max	Factory setting		
		32000			
Description: Note:	Setting parameter for the run sequence of instance NOT 1 within the run-time group set in p20084. The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.				
p20086	BI: NOT 2 input I / NOT 2 input I				
	Access level: 3	Calculated: -	Data type: U32 / Binary		
	Can be changed: T	Scaling: -	Data set: -		
	Units group: -	Unit selection: -			
	Min	Max	Factory setting 0		
	-				
Description:	Sets the signal source of input quantity l of instance NOT 2 of the inverter.				
r20087	BO: NOT 2 inverted output / NOT 2 inv output				
	Access level: 3	Calculated: -	Data type: Unsigned32		
	Can be changed: -	Scaling: -	Data set: -		
	Units group: -	Unit selection: -			
	Min	Max	Factory setting		
Description:	Display parameter for the inverted output of instance NOT 2 of the inverter.				
p20088	NOT 2 run-time group / NOT 2 RTG				
	Access level: 3	Calculated: -	Data type: Integer16		
	Can be changed: T	Scaling: -	Data set: -		
	Units group: -	Unit selection: -			
	Min		Factory setting		
	1	9999	9999		
Description:	Setting parameter for the run-time group in which the instance NOT 2 of the inverter is to be called.				
Value:	1: Run-time group 1				
	$\begin{array}{ll}\text { 2: } \\ \text { 3: } & \text { Run-time group } 2 \\ \text { Run-time group } 3\end{array}$				
	4: Run-time group 4				
	$\begin{array}{ll}\text { 6: } & \text { Run-time group } 6 \\ \text { 9999: } & \text { Do not calculate }\end{array}$				

p20089	NOT 2 run sequence / NOT 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 32000 \end{aligned}$	Factory setting 180
Description: Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20090	BI: NOT 3 input I / NOT 3 input I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal source of input quantity I of instance NOT 3 of the inverter.		
r20091	BO: NOT 3 inverted output / NOT 3 inv output		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for the inverted output of instance NOT 3 of the inverter.		
p20092	NOT 3 run-time group / NOT 3 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 9999 \end{aligned}$	Factory setting 9999
Description:	Setting parameter for the run-time group in which the instance NOT 3 of the inverter is to be called.		
Value:	1: Run-time group 1 2: Run-time group 2 3: Run-time group 3 4: Run-time group 4 5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20093	NOT 3 run sequence / NOT 3 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 32000 \end{aligned}$	Factory setting 190
Description:	Setting parameter for the run sequence of instance NOT 3 within the run-time group set in p20092.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20094[0...3]	CI: ADD 0 inputs / ADD 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Index:	Sets the signal sourc $\begin{aligned} & {[0]=\text { Input X0 }} \\ & {[1]=\text { Input X1 }} \\ & {[2]=\text { Input X2 }} \\ & {[3]=\text { Input X3 }} \end{aligned}$	ies X0, X1, X2, X3 of i	of the adder.
r20095	CO: ADD 0 output Y / ADD 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-		
Description:	Display parameter for the output quantity $\mathrm{Y}=\mathrm{X} 0+\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3$ of instance ADD 0 of the adder.		
p20096	ADD 0 run-time group / ADD 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 5 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 9999 \end{aligned}$	Factory setting 9999
Description: Value:	$\begin{array}{ll}\text { Setting parameter for } \\ \text { 5: } & \text { Run-time grou } \\ \text { 6: } & \text { Run-time grou } \\ \text { 9999: } & \text { Do not calcula }\end{array}$	oup in which the instan	adder is to be called.
p20097	ADD 0 run sequence / ADD 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	Max 32000	Factory setting 210
Description: Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20098[0...3]	CI: ADD 1 inputs / ADD 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Index:	Sets the signal sourc $\begin{aligned} & {[0]=\text { Input X0 }} \\ & {[1]=\text { Input X1 }} \\ & {[2]=\text { Input X2 }} \\ & {[3]=\text { Input X3 }} \end{aligned}$	ies $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ of i	of the adder.

p20104	SUB 0 run-time group I SUB 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 5 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 9999 \end{aligned}$	Factory setting 9999
Description:	Setting parameter for the run-time group in which instance SUB 0 of the subtractor is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20105	SUB 0 run sequence / SUB 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
		32000	
Description:	Setting parameter for the run sequence of instance SUB 0 within the run-time group set in p20104.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20106[0...1]	CI: SUB 1 inputs / SUB 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	Sets the signal source of minuend X 1 and subtrahend X 2 of instance SUB 1 of the subtractor.		
Description:			
	[1] = Subtrahend X2		
r20107	CO: SUB 1 difference Y / SUB 1 difference Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
		-	
Description:	Display parameter for the difference $\mathrm{Y}=\mathrm{X} 1-\mathrm{X} 2$ of instance SUB 1 of the subtractor.		
p20108	SUB 1 run-time group / SUB 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
		9999	9999
Description:	Setting parameter for the run-time group in which instance SUB 1 of the subtractor is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		

p20109	SUB 1 run sequence / SUB 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min 0	$\begin{aligned} & \text { Max } \\ & 32000 \end{aligned}$	Factory setting 250
Description: Note:	Setting parameter for the run sequence of instance SUB 1 within the run-time group set in p20108. The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20110[0...3]	CI: MUL 0 inputs / MUL 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Index:	Sets the signal sourc [0] = Factor X0 [1] = Factor X1 [2] = Factor X2 [3] = Factor X3	$\mathrm{x}, \mathrm{X} 1, \mathrm{X} 2, \mathrm{x} 3$ of instan	e multiplier.
r20111	CO: MUL 0 product Y / MUL 0 product Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
		Max	Factory setting
Description:	Display parameter for the product $\mathrm{Y}=\mathrm{X} 0$ * X 1 * X 2 * X 3 of instance MUL 0 of the multiplier.		
p20112	MUL 0 run-time group / MUL 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 9999 \end{aligned}$	Factory setting 9999
Description: Value:	Setting parameter for 5: Run-time gro 6: Run-time gro 9999: Do not calcul	up in which instance M	ltiplier is to be called.
p20113	MUL 0 run sequence / MUL 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max}_{32000} \end{aligned}$	Factory setting 270
Description: Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20114[0...3]	CI: MUL 1 inputs / MUL 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Index:	Sets the signal sourc [0] = Factor X0 [1] = Factor X1 [2] = Factor X2 [3] = Factor X3	$\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ of insta	multiplier.
r20115	CO: MUL 1 product Y / MUL 1 product Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	$\underline{M i n}$	Max	Factory setting
Description:	Display parameter for the product $Y=X 0$ * $\mathrm{X} 1 \times \mathrm{X} 2$ * X 3 of instance MUL 1 of the multiplier.		
p20116	MUL 1 run-time group / MUL 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 9999 \end{aligned}$	Factory setting 9999
Description: Value:	$\begin{array}{ll}\text { Setting parameter for } \\ \text { 5: } & \text { Run-time group } \\ \text { 6: } & \text { Run-time grou } \\ \text { 9999: } & \text { Do not calcula }\end{array}$	up in which instance	ltiplier is to be called.
p20117	MUL 1 run sequence / MUL 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 32000 \end{aligned}$	Factory setting 280
Description: Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20118[0...1]	CI: DIV 0 inputs / DIV 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Index:	$\begin{aligned} & {[0]=\text { Dividend X0 }} \\ & {[1]=\text { Divisor X1 }} \end{aligned}$		

r20129	CO: AVA 0 output Y I AVA 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for output quantity Y of instance AVA 0 of the absolute value generator with sign evaluation.		
r20130	BO: AVA 0 input negative SN I AVA 0 input neg SN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for signal SN that the input quantity X of instance AVA 0 of the absolute value generator with sign evaluation is negative.		
p20131	AVA 0 run-time group / AVA 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 5 \end{aligned}$	Max 9999	Factory setting 9999
Description:	Setting parameter for the run-time group in which instance AVA 0 of the absolute value generator with sign evaluation is to be called.		
Value:	5: Run-time grou 6: Run-time grou 9999: Do not calcula		
p20132	AVA 0 run sequence / AVA 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -		
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 32000 \end{aligned}$	Factory setting 340
Description:	Setting parameter for the run sequence of instance AVA 0 within the run-time group set in p20131. The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
Note:			
p20133	CI: AVA 1 input X / AVA 1 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal source of the input quantity X of instance AVA 1 of the absolute value generator with sign evaluation.		

p20149	PCL 0 pulse duration in ms / PCL 0 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0.00 \end{aligned}$	Max 60000.00	Factory setting 0.00
Description:	Setting parameter for pulse duration T in milliseconds of instance PCL 0 of the pulse shortener.		
r20150	BO: PCL 0 output Q / PCL 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for output pulse Q of instance PCL 0 of the pulse shortener.		
p20151	PCL 0 run-time group / PCL 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	$\begin{aligned} & \operatorname{Max} \\ & 9999 \end{aligned}$	Factory setting 9999
Description:	Setting parameter for the run-time group in which the instance PCL 0 of the pulse shortener is to be called.		
Value:	5: Run-time grou 6: Run-time grou 9999: Do not calcula		
p20152	PCL 0 run sequence / PCL 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 32000 \end{aligned}$	Factory setting 400
Description: Note:	Setting parameter for the run sequence of instance PCL 0 within the run-time group set in p20151. The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20153	BI: PCL 1 input pulse I / PCL 1 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\underline{M i n}$	Max	Factory setting 0
Description:	Sets the signal source for the input pulse I of instance PCL 1 of the pulse shortener.		

p20159	PDE 0 pulse delay time in ms / PDE 0 t_del ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0.00 \end{aligned}$	Max 60000.00	Factory setting 0.00
Description:	Setting parameter for pulse delay time T in milliseconds of instance PDE 0 of the closing delay device.		
r20160	BO: PDE 0 output Q / PDE 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for output pulse Q of instance PDE 0 of the closing delay device.		
p20161	PDE 0 run-time group / PDE 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 5 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 9999 \end{aligned}$	Factory setting 9999
Description: Value:	$\begin{array}{ll} \text { 5: } & \text { Run-time group } 5 \\ \text { 6: } & \text { Run-time group } 6 \\ \text { 9999: } & \text { Do not calculate } \end{array}$		
p20162	PDE 0 run sequence / PDE 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 32000 \end{aligned}$	Factory setting 430
Description:	Setting parameter for the run sequence of instance PDE 0 within the run-time group set in p20161.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20163	BI: PDE 1 input pulse I / PDE 1 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal source for the input pulse I of instance PDE 1 of the closing delay device.		

p20174	PDF 1 pulse extension time in ms / PDF 1 t_ext ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{gathered} \text { Min } \\ 0.00 \end{gathered}$	Max 60000.00	$\begin{aligned} & \text { Factory setting } \\ & 0.00 \end{aligned}$
Description:	Setting parameter for pulse extension time T in milliseconds of instance PDF 1 of the breaking delay device.		
r20175	BO: PDF 1 output Q / PDF 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	-	
Description:	Display parameter for output pulse Q of instance PDF 1 of the breaking delay device.		
p20176	PDF 1 run-time group / PDF 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 9999 \end{aligned}$	Factory setting 9999
Description: Value:	$\begin{array}{ll} \text { Setting parameter for } \\ \text { 5: } & \text { Run-time grou } \\ \text { 6: } & \text { Run-time grou } \\ \text { 9999: } & \text { Do not calcula } \end{array}$	up in which the ins	breaking delay device is to be called.
p20177	PDF 1 run sequence / PDF 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 32000 \end{aligned}$	Factory setting 470
Description: Note:	Setting parameter for the run sequence of instance PDF 1 within the run-time group set in p20176. The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20178[0...1]	BI: PST 0 inputs / PST 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Index:	Sets the signal source for input pulse I and the reset input R of instance PST 0 of the pulse extension element. [0] = Input pulse I [1] = Reset input R		

r20199	BO: DFR 0 output Q I DFR 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\underline{M i n}$	Max	Factory setting
Description:	Display parameter for output Q of instance DFR 0 of the D flipflop.		
r20200	BO: DFR 0 inverted output QN / DFR 0 inv outp QN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the inverted output QN of instance DFR 0 of the D flipflop.		
p20201	DFR 0 run-time group / DFR 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 9999 \end{aligned}$	Factory setting 9999
Description:	Setting parameter for the run-time group in which instance DFR 0 of the D flipflop is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20202	DFR 0 run sequence I DFR 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 32000 \end{aligned}$	Factory setting 550
Description:	Setting parameter for the run sequence of instance DFR 0 within the run-time group set in p20201.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20203[0...3]	BI: DFR 1 inputs / DFR 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Index:	Sets the signal source for [0] = Trigger input I [1] = D input D [2] $=$ Set S [3] = Reset R	t, D input D, set inp	ut R of instance DFR 1 of the D flipflop.

p20209	BI: BSW 0 switch setting I/ BSW 0 sw_setting		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\underline{M i n}$	Max	Factory setting 0
Description:	Sets the signal source of the switch setting I of instance BSW 0 of the binary changeover switch.		
r20210	BO: BSW 0 output Q / BSW 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for output quantity Q of instance BSW 0 of the binary changeover switch.		
p20211	BSW 0 run-time group / BSW 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 9999 \end{aligned}$	Factory setting 9999
Description:	Setting parameter for the run-time group in which the instance BSW 0 of the binary changeover switch is to be called.		
Value:	1: Run-time group 1 2: Run-time group 2 3: Run-time group 3 4: Run-time group 4 5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20212	BSW 0 run sequence / BSW 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{gathered} \operatorname{Max} \\ 7999 \end{gathered}$	Factory setting 580
Description:	Setting parameter for the run sequence of instance BSW 0 within the run-time group set in p20211.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20213[0...1]	BI: BSW 1 inputs / BSW 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Index:	Sets the signal source of input quantities $I 0$ and $I 1$ of instance BSW 1 of the binary changeover switch.$\begin{aligned} & {[0]=\text { Input IO }} \\ & {[1]=\text { Input II }} \end{aligned}$		

p20219	BI: NSW 0 switch setting I / NSW 0 sw_setting		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\underline{M i n}$	Max	Factory setting 0
Description:	Sets the signal source of the switch setting I of instance NSW 0 of the numeric changeover switch.		
r20220	CO: NSW 0 output Y I NSW 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for output quantity Y of instance NSW 0 of the numeric changeover switch.		
p20221	NSW 0 run-time group / NSW 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 9999 \end{aligned}$	Factory setting 9999
Description:	Setting parameter for the run-time group in which the instance NSW 0 of the numeric changeover switch is to be called.		
Value:	5: Run-time grou 6: Run-time grou 9999: Do not calcula		
p20222	NSW 0 run sequence I NSW 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 32000 \end{aligned}$	Factory setting 610
Description: Note:	Setting parameter for the run sequence of instance NSW 0 within the run-time group set in p20221. The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20223[0...1]	CI: NSW 1 inputs / NSW 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Index:	Sets the signal source of input quantities X0 and X1 of instance NSW 1 of the numeric changeover switch.$\begin{aligned} & {[0]=\text { Input X0 }} \\ & {[1]=\text { Input X1 }} \end{aligned}$		

p20224	BI: NSW 1 switch setting I / NSW 1 sw_setting		
	Access level: 3	Calculated:	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Sets the signal source of the switch setting I of instance NSW 1 of the numeric changeover switch.		
r20225	CO: NSW 1 output Y I NSW 1 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for output quantity Y of instance NSW 1 of the numeric changeover switch.		
p20226	NSW 1 run-time group / NSW 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 5 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 9999 \end{aligned}$	Factory setting 9999
Description:	Setting parameter for the run-time group in which the instance NSW 1 of the numeric changeover switch is to be called.		
Value:	5: Run-time grou 6: Run-time grou 9999: Do not calcula		
p20227	NSW 1 run sequence I NSW 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 32000 \end{aligned}$	Factory setting 620
Description: Note:	Setting parameter for the run sequence of instance NSW 1 within the run-time group set in p20226. The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20228	CI: LIM 0 input X / LIM 0 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal source of input quantity X of instance LIM 0 of the limiter.		

p20229	LIM 0 upper limit value LU / LIM 0 upper lim LU		
	Access level: 3	Calculated:	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-340.28235E36	340.28235 E 36	0.0000
Description:	Setting parameter for the upper limit value LU of instance LIM 0 of the limiter.		
p20230	LIM 0 lower limit value LL / LIM 0 lower lim LL		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-340.28235E36	340.28235 E 36	0.0000
Description:	Setting parameter for the lower limit value LL of instance LIM 0 of the limiter.		
r20231	CO: LIM 0 output Y I LIM 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for the limited output quantity Y of instance LIM 0 of the limiter.		
r20232	BO: LIM 0 input quantity at the upper limit QU I LIM 0 QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter of instance LIM 0 of limiter QU (upper limit reached), i.e. $\mathrm{QU}=1$ for X >= LU.		
r20233	BO: LIM 0 input quantity at the lower limit QL / LIM 0 QL		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter of	of limiter QL (lower lim	$\mathrm{QL}=1$ for $\mathrm{X}<=\mathrm{LL}$.
p20234	LIM 0 run-time group / LIM 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 9999 \end{aligned}$	Factory setting 9999
Description:	Setting parameter for the run-time group in which instance LIM 0 of the limiter is to be called.		
Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		

p20235	LIM 0 run sequence / LIM 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 32000 \end{aligned}$	Factory setting 640
Description: Note:	Setting parameter for the run sequence of instance LIM 0 within the run-time group set in p20234. The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20236	CI: LIM 1 input X / LIM 1 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
		Max	Factory setting 0
Description:	Sets the signal source of input quantity X of instance LIM 1 of the limiter.		
p20237	LIM 1 upper limit value LU / LIM 1 upper lim LU		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & -340.28235 E 36 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 340.28235 \mathrm{E} 36 \end{aligned}$	Factory setting 0.0000
Description:	Setting parameter for	value LU of instance LI	
p20238	LIM 1 lower limit value LL / LIM 1 lower lim LL		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & -340.28235 E 36 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 340.28235 E 36 \end{aligned}$	Factory setting 0.0000
Description:	Setting parameter for	value LL of instance LIM	
r20239	CO: LIM 1 output Y / LIM 1 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for the limited output quantity Y of instance LIM 1 of the limiter.		
r20240	BO: LIM 1 input quantity at the upper limit QU / LIM 1 QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter of instance LIM 1 of limiter QU (upper limit reached), i.e. $\mathrm{QU}=1$ for $\mathrm{X}>=\mathrm{LU}$.		

p20251	BI: PT1 1 accept setting value S / PT1 1 acc set val		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Sets the signal source for the "accept setting value" signal of instant PT1 1 of the smoothing element.		
p20252	PT1 1 smoothing time constant in ms / PT1 1 T_smooth ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	0.00	340.28235 E 36	
Description:	Sets the smoothing time constant T in milliseconds of instance PT1 1 of the smoothing element.		
r20253	CO: PT1 1 output Y / PT1 1 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for	deutput quantity Y of ins	he smoothing element.
p20254	PT1 1 run-time group / PT1 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min 5	$\begin{aligned} & \text { Max } \\ & 9999 \end{aligned}$	Factory setting 9999
Description:	Setting parameter for the run-time group in which instance PT1 1 of the smoothing element is to be called.		
Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20255	PT1 1 run sequence / PT1 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max}_{32000} \end{aligned}$	Factory setting 680
Description:	Setting parameter for the run sequence of instance PT1 1 within the run-time group set in p20254.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20256[0...1]	CI: INT 0 inputs / INT 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Index:	Sets the signal source of input quantity X and of setting value SV of instance INT 0 of the integrator.$\begin{aligned} & {[0]=\text { Input X }} \\ & {[1]=\text { Setting value SV }} \end{aligned}$		
p20257	INT 0 upper limit value LU / INT 0 upper lim LU		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\operatorname{Min}_{-340.28235 E 36}$	$\begin{aligned} & \operatorname{Max} \\ & 340.28235 \mathrm{E} 36 \end{aligned}$	Factory setting 0.0000
Description:	Sets the upper limit value LU of instance INT 0 of the integrator.		
p20258	INT 0 lower limit value LL / INT 0 lower lim LL		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & -340.28235 E 36 \end{aligned}$	Max 340.28235E36	Factory setting 0.0000
Description:	Sets the lower limit value LL of instance INT 0 of the integrator.		
p20259	INT 0 integrating time constant in ms / INT 0 T_Integr ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0.00 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 340.28235 E 36 \end{aligned}$	Factory setting 0.00
Description:	Sets the integrating time constant Ti in milliseconds of instance INT 0 of the integrator.		
p20260	BI: INT 0 accept setting value S / INT 0 acc set val		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal sourc	setting value" signal of	f the integrator.
r20261	CO: INT 0 output Y / INT 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for output quantity Y of instance INT 0 of the integrator. If $L L>=L U$, then the output quantity $Y=L U$.		

r20262	BO: INT 0 integrator at the upper limit QU / INT 0 QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
		-	
Description:	Display parameter for the signal QU that output quantity Y of instance INT 0 of the integrator has reached the upper limit value LU.		
r20263	BO: INT 0 integrator at the lower limit QL I INT 0 QL		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for the signal QL that output quantity Y of instance INT 0 of the integrator has reached the lower limit value LL.		
p20264	INT 0 run-time group / INT 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 5 \end{aligned}$	Max 9999	Factory setting 9999
Description:	Setting parameter for the run-time group in which instance INT 0 of the integrator is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20265	INT 0 run sequence / INT 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min 0	Max 32000	Factory setting 700
Description:	Setting parameter for the run sequence of instance INT 0 within the run-time group set in p20264.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20266	CI: LVM 0 input X / LVM 0 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description:	Sets the signal source of input quantity X of instance LVM 0 of the double-sided limiter.		

p20267	LVM 0 interval average value M / LVM 0 avg value M		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\operatorname{Min}_{-340.28235 E 36}$	$\begin{aligned} & \operatorname{Max} \\ & 340.28235 E 36 \end{aligned}$	Factory setting 0.0000
Description:	Setting parameter for the interval average M of instance LVM 0 of the double-sided limiter.		
p20268	LVM 0 interval limit L / LVM 0 limit L		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\operatorname{Min}_{-340.28235 E 36}$	$\begin{aligned} & \text { Max } \\ & 340.28235 E 36 \end{aligned}$	Factory setting 0.0000
Description:	Setting parameter for the interval limit L of instance LVM 0 of the double-sided limiter.		
p20269	LVM 0 hyst HY I LVM 0 hyst HY		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\operatorname{Min}_{-340.28235 E 36}$	$\begin{aligned} & \operatorname{Max} \\ & 340.28235 \mathrm{E} 36 \end{aligned}$	Factory setting 0.0000
Description:	Setting parameter for hysteresis HY of instance LVM 0 of the double-sided limiter.		
r20270	BO: LVM 0 input quantity above interval QU / LVM $0 \times$ above QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter of instance LVM 0 of the double-sided limiter that input quantity X was at least once $X>M+L$ and X is $>=\mathrm{M}+\mathrm{L}-\mathrm{HY}$.		
r20271	BO: LVM 0 input quantity within interval QM / LVM $0 \times$ within QM		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter of	of the double-sided	ut quantity X lies within the interval.
r20272	BO: LVM 0 input quantity below interval QL / LVM $0 \times$ below QL		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter of instance LVM 0 of the double-sided limiter that input quantity X was at least once $\mathrm{X}<\mathrm{M}-\mathrm{L}$ and X is $<=\mathrm{M}-\mathrm{L}+\mathrm{HY}$.		

p20273	LVM 0 run-time group / LVM 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	$\begin{aligned} & \text { Max } \\ & 9999 \end{aligned}$	Factory setting 9999
Description: Value:	Setting parameter fo 5: Run-time gro 6: Run-time group 9999: Do not calcu	up in which instance L	uble-sided limiter is to be called.
p20274	LVM 0 run sequence / LVM 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 7999 \end{aligned}$	Factory setting 720
Description: Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20275	CI: LVM 1 input X / LVM 1 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	$\underline{M i n}$	Max	Factory setting 0
Description:	Sets the signal source of input quantity X of instance LVM 1 of the double-sided limiter.		
p20276	LVM 1 interval average value M / LVM 1 avg value M		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\operatorname{Min}_{-340.28235 E 36}$	$\begin{aligned} & \text { Max } \\ & 340.28235 E 36 \end{aligned}$	Factory setting 0.0000
Description:	Setting parameter for the interval average M of instance LVM 1 of the double-sided limiter.		
p20277	LVM 1 interval limit L L LVM 1 limit L		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\operatorname{Min}_{-340.28235 E 36}$	$\begin{aligned} & \text { Max } \\ & 340.28235 E 36 \end{aligned}$	Factory setting 0.0000
Description:	Setting parameter for the interval limit L of instance LVM 1 of the double-sided limiter.		

p20283	LVM 1 run sequence / LVM 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max}_{7999} \end{aligned}$	Factory setting 730
Description:	Setting parameter for the run sequence of instance LVM within the run-time group set in p20282.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20284	CI: DIF 0 input X I DIF 0 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Sets the signal source of input quantity X of instance DIF 0 of the differentiating element.		
p20285	DIF 0 differentiating time constant in ms / DIF 0 T_diff ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	0.00	340.28235 E 36	
Description:	Sets the differentiating time constant Td in milliseconds of instance DIF 0 of the differentiating element.		
r20286	CO: DIF 0 output Y I DIF 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for output quantity Y of instance DIF 0 of the differentiating element.		
p20287	DIF 0 run-time group / DIF 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max 9999	Factory setting 9999
Description:	Setting parameter for the run-time group in which instance DIF 0 of the differentiating element is to be called.		
Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		

p20288	DIF 0 run sequence / DIF 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 32000 \end{aligned}$	Factory setting 750 750
Description: Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20300	BI: NOT 4 input I / NOT 4 input I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\underline{M i n}$	Max	Factory setting 0
Description:	Sets the signal source of input quantity I of instance NOT 4 of the inverter.		
r20301	BO: NOT 4 inverted output / NOT 4 inv output		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	-	
Description:	Display parameter for the inverted output of instance NOT 4 of the inverter.		
p20302	NOT 4 run-time group / NOT 4 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 9999 \end{aligned}$	Factory setting 9999
Description:	Setting parameter for the run-time group in which the instance NOT 4 of the inverter is to be called.		
Value:	1: Run-time group 1 2: Run-time group 2 3: Run-time group 3 4: Run-time group 4 5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20303	NOT 4 run sequence / NOT 4 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 32000 \end{aligned}$	Factory setting 770
Description:	Setting parameter for the run sequence of instance NOT 4 within the run-time group set in p20302.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

r20309	CO: ADD 2 output Y I ADD 2 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for the output quantity $\mathrm{Y}=\mathrm{X} 0+\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3$ of instance ADD 2 of the adder.		
p20310	ADD 2 run-time group / ADD 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Setting parameter for the run-time group in which the instance ADD 2 of the adder is to be called.		
Value:	$\begin{array}{ll}\text { 5: } & \text { Run-time group } 5 \\ \text { 6: } & \text { Run-time group } 6\end{array}$ 9999: Do not calculate		
p20311	ADD 2 run sequence I ADD 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 32000 \end{aligned}$	Factory setting 800
Description:	Setting parameter for	ce of instance ADD 2 w	e group set in p20310.
Note:	The function blocks sequence value.	sequence value are cal	unction blocks with a higher run
p20312[0...1]	CI: NCM 0 inputs / NCM 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	Sets the signal source of input quantities X0 and X1 of instance NCM 0 of the numeric comparator.$\begin{gathered} {[0]=\text { Input X0 }} \\ {[1]=\text { Input } \mathrm{X}} \end{gathered}$		
Index:			
r20313	BO: NCM 0 output QU / NCM 0 output QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	Display parameter for binary quantity QU of instance NCM 0 of the numeric comparator. QU is only set if X0 > X1.		
Description:			

r20314	BO: NCM 0 output QE I NCM 0 output QE		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min		Factory setting
Description:	Display parameter for binary quantity QE of instance NCM 0 of the numeric comparator. QE is only set if $\mathrm{XO}=\mathrm{X} 1$.		
r20315	BO: NCM 0 output QL / NCM 0 output QL		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\underline{M i n}$	Max	Factory setting
Description:	Display parameter for binary quantity QL of instance NCM 0 of the numeric comparator. QL is only set if $\mathrm{X} 0<\mathrm{X}$.		
p20316	NCM 0 run-time group / NCM 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 5 \end{aligned}$	Max 9999	Factory setting 9999
Description: Value:	6: Run-time group 6 9999: Do not calculate		numeric comparator is to be called.
p20317	NCM 0 run sequence / NCM 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 32000 \end{aligned}$	Factory setting 820
Description:	Setting parameter for the run sequence of instance NCM 0 within the run-time group set in p20316.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20318[0...1]	CI: NCM 1 inputs / NCM 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting 0
Description: Index:	Sets the signal source of input quantities X0 and X1 of instance NCM 1 of the numeric comparator.$\begin{aligned} & {[0]=\text { Input X0 }} \\ & {[1]=\text { Input X1 }} \end{aligned}$		

p20324[0...1]	BI: RSR 2 inputs / RSR 2 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\underline{M i n}$	Max	Factory setting 0
Description: Index:	Sets the signal source for set input S and reset input R of instance RSR 2 of the RS flipflop.$\begin{aligned} & {[0]=\text { Set S }} \\ & {[1]=\text { Reset R }} \end{aligned}$		
r20325	BO: RSR 2 output Q / RSR 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for	ance RSR 2 of the	
r20326	BO: RSR 2 inverted output QN / RSR 2 inv outp QN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for	QN of instance RS	
p20327	RSR 2 run-time group / RSR 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 9999 \end{aligned}$	Factory setting 9999
Description:	Setting parameter for the run-time group in which instance RSR 2 of the RS flipflop is to be called.		
Value:	1: Run-time grou		
	2: Run-time grou		
	3: Run-time group		
	4: Run-time grou		
	5: Run-time grou		
	6: Run-time grou		
	9999: Do not calcula		
p20328	RSR 2 run sequence / RSR 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 7999 \end{aligned}$	$\begin{aligned} & \text { Factory setting } \\ & 850 \end{aligned}$
Description:	Setting parameter for the run sequence of instance RSR 2 within the run-time group set in p20327.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20339	BI: PDE 3 input pulse I / PDE 3 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance PDE 3 of the closing delay device.		
p20340	PDE 3 pulse delay time in ms / PDE 3 t_del ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
		60000.00	
Description:	Setting parameter for pulse delay time T in milliseconds of instance PDE 3 of the closing delay device.		
r20341	BO: PDE 3 output Q / PDE 3 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for	of instance PDE 30	device.
p20342	PDE 3 run-time group / PDE 3 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 9999 \end{aligned}$	Factory setting 9999
Description:	Setting parameter for the run-time group in which instance PDE 3 of the closing delay device is to be called.		
Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20343	PDE 3 run sequence / PDE 3 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	0	32000	
Description:	Setting parameter for the run sequence of instance PDE 3 within the run-time group set in p20342.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20349	BI: PDF 3 input pulse I / PDF 3 inp_pulse I		
	Access level: 3	Calculated:	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	-	
Description:	Sets the signal source for the input pulse I of instance PDF 3 of the breaking delay device.		
p20350	PDF 3 pulse extension time in ms / PDF 3 t_ext ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Setting parameter for	time T in milliseco	F 3 of the breaking delay device.
r20351	BO: PDF 3 output Q / PDF 3 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for	of instance PDF 3	device.
p20352	PDF 3 run-time group / PDF 3 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	$\begin{aligned} & \text { Max } \\ & 9999 \end{aligned}$	Factory setting 9999
Description:	Setting parameter for	up in which the ins	breaking delay device is to be called.
Value:	5: Run-time grou		
	6: Run-time grou		
	9999: Do not calcula		
p20353	PDF 3 run sequence / PDF 3 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	0	32000	
Description:	Setting parameter for the run sequence of instance PDE 3 within the run-time group set in p20352.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20354	BI: MFP 2 input pulse I / MFP 2 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\underline{M i n}$	Max	Factory setting 0
Description:	Sets the signal source for the input pulse I of instance MFP 2 of the pulse generator.		
p20355	MFP 2 pulse duration in ms / MFP 2 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	0.00	60000.00	0.00
Description:	Setting parameter for	T in milliseconds of in	the pulse generator.
r20356	BO: MFP 2 output Q / MFP 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for	of instance MFP 2 of	tor.
p20357	MFP 2 run-time group / MFP 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	$\begin{aligned} & \text { Max } \\ & 9999 \end{aligned}$	Factory setting 9999
Description:	Setting parameter for the run-time group in which the instance MFP 2 of the pulse generator is to be called.		
Value:	5: Run-time grou 6: Run-time grou 9999: Do not calcula		
p20358	MFP 2 run sequence / MFP 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 32000 \end{aligned}$	Factory setting 950
Description:	Setting parameter for the run sequence of instance MFP 2 within the run-time group set in p20357.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20359	BI: MFP 3 input pulse I / MFP 3 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Sets the signal source for the input pulse I of instance MFP 3 of the pulse generator.		
p20360	MFP 3 pulse duration in ms / MFP 3 pulse_dur ms		
	Access level: 3	Calculated:	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \end{aligned}$	Max 60000.00	Factory setting 0.00
Description:	Setting parameter for	T in milliseconds of in	the pulse generator.
r20361	BO: MFP 3 output Q / MFP 3 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for	of instance MFP 30	
p20362	MFP 3 run-time group / MFP 3 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 5 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 9999 \end{aligned}$	Factory setting 9999
Description:	Setting parameter for the run-time group in which the instance MFP 3 of the pulse generator is to be called.		
Value:	5: Run-time group 6: Run-time group 9999: Do not calculat		
p20363	MFP 3 run sequence / MFP 3 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	0	32000	
Description: Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20372	CI: PLI 0 input X / PLI 0 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Sets the signal source for input X of the polyline (20 breakpoints) of instance PLI 0 .		
r20373	CO: PLI 0 output Y I PLI 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for the output quantity Y of the polyline (20 breakpoints) of instance PLI 0		
p20374[0...19]	PLI 0 X-coordinate, A breakpoint / PLI 0 X-coordinate		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min -340.28235E36	Max 340.28235E36	Factory setting 0.0000
Description: Index:	Sets the x-coordinat [0] = Breakpoint 0 [1] = Breakpoint 1 [2] = Breakpoint 2 [3] = Breakpoint 3 [4] = Breakpoint 4 [5] = Breakpoint 5 [6] = Breakpoint 6 [7] = Breakpoint 7 [8] = Breakpoint 8 [9] = Breakpoint 9 [10] = Breakpoint 10 [11] = Breakpoint 11 [12] = Breakpoint 12 [13] = Breakpoint 13 [14] = Breakpoint 14 [15] = Breakpoint 15 [16] = Breakpoint 16 [17] = Breakpoint 17 [18] = Breakpoint 18 [19] = Breakpoint 19	oints (A0...A19) of the	akpoints) of instance PLI 0.

p20375[0...19]	PLI 0 Y-coordinate, B breakpoint / PLI 0 Y-coordinate		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & -340.28235 E 36 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 340.28235 E 36 \end{aligned}$	Factory setting 0.0000
Description: Index:	Sets the y-coordinat [0] = Breakpoint 0 [1] = Breakpoint 1 [2] = Breakpoint 2 [3] = Breakpoint 3 [4] = Breakpoint 4 [5] = Breakpoint 5 [6] = Breakpoint 6 [7] = Breakpoint 7 [8] = Breakpoint 8 [9] $=$ Breakpoint 9 [10] = Breakpoint 10 [11] = Breakpoint 11 [12] = Breakpoint 12 [13] = Breakpoint 13 [14] = Breakpoint 14 [15] = Breakpoint 15 [16] = Breakpoint 16 [17] = Breakpoint 17 [18] = Breakpoint 18 [19] = Breakpoint 19	oints (B0...B19) of the	kpoints) of instance PLI 0.
p20376	PLI 0 run-time group / PLI 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 5 \end{aligned}$	Max 9999	Factory setting 9999
Description: Value:	$\begin{array}{ll}\text { Setting parameter fo } \\ \text { 5: } & \text { Run-time gro } \\ \text { 6: } & \text { Run-time gro } \\ \text { 9999: } & \text { Do not calcul }\end{array}$	up in which instance P	ine is to be called
p20377	PLI 0 run sequence / PLI 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Data set: -
	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 32000 \end{aligned}$	Factory setting 980
Description: Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20378	CI: PLI 1 input X / PLI 1 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for input X of the polyline (20 breakpoints) of instance PLI 1.		
r20379	CO: PLI 1 output Y I PLI 1 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
Description:	Display parameter for the output quantity Y of the polyline (20 breakpoints) of instance PLI 1		
p20380[0...19]	PLI 1 X-coordinate, A breakpoint / PLI 1 X-coordinate		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Data set: -
	Units group: -	Unit selection: -	
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Sets the x -coordinates for the breakpoints (A0...A19) of the polyline (20 breakpoints) of instance PLI 1.		
Index:			
	$[1]=\text { Breakpoint } 1$		
	[2] = Breakpoint 2		
	[3] = Breakpoint 3		
	[4] = Breakpoint 4		
	[5] = Breakpoint 5		
	[6] = Breakpoint 6		
	[7] $=$ Breakpoint 7		
	[8] = Breakpoint 8		
	[9] = Breakpoint 9		
	[10] = Breakpoint 10		
	[11] $=$ Breakpoint 11		
	[12] = Breakpoint 12		
	[13] = Breakpoint 13		
	[14] = Breakpoint 14		
	[15] = Breakpoint 15		
	[16] $=$ Breakpoint 16		
	[17] $=$ Breakpoint 17		
	[18] $=$ Breakpoint 18		
	[19] = Breakpoint 19		

1.3 Command and Drive Data Sets - Overview

1.3.1 Command Data Sets (CDS)

Product: SINAMICS G120 CU240, Version: 4402100, Language: eng, Type: CDS
p0641[0...n] Cl: Current limit, variable / Curr lim var
p0700[0...n] Command source selection / Cmd src sel
p0820[0...n] BI: Drive Data Set selection DDS bit 0 / DDS select., bit 0
p0821[0...n] BI: Drive Data Set selection DDS bit 1 / DDS select., bit 1
p0840[0...n] BI: ON / OFF (OFF1) / ON / OFF (OFF1)
p0844[0...n] BI: No coast-down / coast-down (OFF2) signal source 1 / OFF2 S_src 1
p0845[0...n] BI: No coast-down / coast-down (OFF2) signal source 2 / OFF2 S_src 2
p0848[0...n] BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_src 1
p0849[0...n] BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_src 2
p0852[0...n] BI: Enable operation/inhibit operation / Operation enable
p0854[0...n] BI: Control by PLC/no control by PLC / Master ctrl by PLC
p0855[0...n] BI: Unconditionally release holding brake / Uncond open brake
p0856[0...n] BI: Speed controller enable / n_ctrl enable
p0858[0...n] BI: Unconditionally close holding brake / Uncond close brake
p1000[0...n] Speed setpoint selection / n_set sel
p1020[0...n] BI: Fixed speed setpoint selection Bit $0 / n _$set_fixed Bit 0
p1021[0...n] BI: Fixed speed setpoint selection Bit 1 / n_set_fixed Bit 1
p1022[0...n] BI: Fixed speed setpoint selection Bit $2 /$ n_set_fixed Bit 2
p1023[0...n] BI: Fixed speed setpoint selection Bit 3 /n_set_fixed Bit 3
p1035[0...n] BI: Motorized potentiometer setpoint raise / Mop raise
p1036[0...n] BI: Motorized potentiometer lower setpoint / Mop lower
p1039[0...n] BI: Motorized potentiometer inversion / MotP inv
p1041[0...n] BI: Motorized potentiometer manual/automatic / Mop manual/auto
p1042[0...n] CI: Motorized potentiometer automatic setpoint / Mop auto setpoint
p1043[0...n] BI: Motorized potentiometer accept setting value / MotP acc set val
p1044[0...n] CI: Motorized potentiometer setting value / Mop set val
p1051[0...n] CI: Speed limit RFG positive direction of rotation / n_limit RFG pos
p1052[0...n] CI: Speed limit RFG negative direction of rotation / n_limit RFG neg
p1055[0...n] BI: Jog bit $0 /$ Jog bit 0
p1056[0...n] BI: Jog bit $1 /$ Jog bit 1
p1070[0...n] Cl: Main setpoint / Main setpoint
p1071[0...n] Cl: Main setpoint scaling / Main setp scal
p1075[0...n] Cl: Suppl setpoint / Suppl setpoint
p1076[0...n] CI: Supplementary setpoint scaling / Suppl setp scal
p1085[0...n] Cl: Speed limit in positive direction of rotation / n_limit pos
p1088[0...n] CI: Speed limit in negative direction of rotation / n_limit neg
p1108[0...n] BI: Total setpoint selection / Total setp sel
p1109[0...n] CI: Total setpoint / Total setp
p1110[0...n] BI: Inhibit negative direction / Inhib neg dir
p1111[0...n] BI: Inhibit positive direction / Inhib pos dir
p1113[0...n] BI: Setpoint inversion / Setp inv
p1122[0...n] BI: Bypass ramp-function generator / Bypass RFG
p1140[0...n] BI: Enable ramp-function generator/inhibit ramp-function generator / RFG enable
p1141[0...n] BI: Continue ramp-function generator/freeze ramp-function generator / Continue RFG
p1142[0...n] BI: Enable setpoint/inhibit setpoint / Setpoint enable
p1143[0...n] BI: Ramp-function generator, accept setting value / RFG accept set v
p1144[0...n] CI: Ramp-function generator setting value / RFG setting value
p1155[0...n] Cl: Speed controller speed setpoint 1 / n_ctrl n_set 1
p1160[0...n] Cl: Speed controller speed setpoint $2 / n _c t r l$ n_set 2
p1201[0...n] BI: Flying restart enable signal source / Fly_res enab S_src
p1230[0...n] BI: DC braking activation / DC brake act
p1330[0...n] CI: U/f control independent voltage setpoint / Uf U_set independ.
p1352[0...n] Cl: Motor holding brake starting frequency signal source / Brake f_start
$\mathrm{p} 1455[0 \ldots \mathrm{n}] \quad \mathrm{Cl}$: Speed controller P gain adaptation signal / n_ctrl Adpt_sig Kp
p1466[0...n] Cl: Speed controller P-gain scaling / n_ctrl Kp scal
p1475[0...n] CI: Speed controller torque setting value for motor holding brake / n_ctrl M_sv MHB
p1476[0...n] BI: Speed controller hold integrator / n_ctrl integ stop
p1477[0...n] BI: Speed controller set integrator value / n_ctrl integ set
p1478[0...n] Cl: Speed controller integrator setting value / n_ctr integ_setVal
p1479[0...n] Cl: Speed controller integrator setting value scaling / n_ctrl I_val scal
p1486[0...n] CI: Droop compensation torque / Droop M_comp
p1492[0...n] BI: Droop feedback enable / Droop enable
p1500[0...n] Torque setpoint selection / M_set sel
p1501[0...n] BI: Change over between closed-loop speed/torque control / Changeov n/M_ctrl
p1503[0...n] CI: Torque setpoint / M_set
p1511[0...n] CI: Supplementary torque $1 / \mathrm{M}$ _suppl 1
p1512[0...n] CI: Supplementary torque 1 scaling / M_suppl 1 scal
p1513[0...n] CI: Supplementary torque 2 / M_suppl 2
p1522[0...n] CI: Torque limit upper / M_max upper
p1523[0...n] Cl: Torque limit lower / M_max lower
p1528[0...n] CI: Torque limit upper scaling / M_max upper scal
p1529[0...n] CI: Torque limit lower scaling / M_max lower scal
p1552[0...n] CI: Torque limit upper scaling without offset / M_max up w/o offs
p1554[0...n] CI: Torque limit lower scaling without offset / M_max low w/o offs
p1571[0...n] CI: Supplementary flux setpoint / Suppl flux setp
p2103[0...n] BI: 1. Acknowledge faults / 1. Acknowledge
p2104[0...n] BI: 2. Acknowledge faults / 2. Acknowledge
p2105[0...n] BI: 3. Acknowledge faults / 3. Acknowledge
p2106[0...n] BI: External fault 1 / External fault 1
p2107[0...n] BI: External fault 2 / External fault 2
p2108[0...n] BI: External fault 3 / External fault 3
p2112[0...n] BI: External alarm 1 / External alarm 1
p2116[0...n] BI: External alarm 2 / External alarm 2
p2117[0...n] BI: External alarm 3 / External alarm 3
p2144[0...n] BI: Motor stall monitoring enable (negated) / Mot stall enab neg
p2148[0...n] BI: RFG active / RFG active
p2151[0...n] CI: Speed setpoint for messages/signals / n_set for msg
p2200[0...n] BI: Technology controller enable / Tec_ctrl enable
p2220[0...n] BI: Technology controller fixed value selection bit $0 /$ Tec_ctrl sel bit 0
p2221[0...n] BI: Technology controller fixed value selection bit $1 /$ Tec_ctrl sel bit 1
p2222[0...n] BI: Technology controller fixed value selection bit $2 /$ Tec_ctrl sel bit 2
p2223[0...n] BI: Technology controller fixed value selection bit 3 / Tec_ctrl sel bit 3
p2235[0...n] BI: Technology controller motorized potentiometer raise setpoint / Tec_ctrl mop raise
p2236[0...n] BI: Technology controller motorized potentiometer lower setpoint / Tec_ctrl mop lower
p2253[0...n] CI: Technology controller setpoint 1 / Tec_ctrl setp 1
p2254[0...n] CI: Technology controller setpoint $2 /$ Tec_ctrl setp 2
p2264[0...n] CI: Technology controller actual value / Tec_ctrl act val
p2286[0...n] BI: Hold technology controller integrator / Tec_ctr integ stop

p2289[0...n]	Cl : Technology controller pre-control signal / Tec_ctrl prectrl
p2296[0...n]	Cl : Technology controller output scaling / Tec_ctrl outp scal
p2297[0...n]	CI: Technology controller maximum limit signal source / Tec_ctrl m_Im s_sc
p2298[0...n]	Cl : Technology controller minimum limit signal source / Tec_ctrl min_I s_s
p2299[0...n]	CI: Technology controller limit offset / Tech_ctrl lim offs
p3111[0...n]	BI: External fault 3, enable / Ext fault 3 enab
p3112[0...n]	BI: External fault 3 enable negated/Ext flt 3 enab neg
p3230[0...n]	Cl : Load monitoring, speed actual value / Load monit n_act
p3232[0...n]	BI: Load monitoring failure detection / Load_moni fail_det
p3330[0...n]	BI: 2-3-WIRE Control Command $1 / 2-3-$ WIRE CC_1
p3331[0...n]	BI: 2-3-WIRE Control Command 2 / 2-3-WIRE CC_2
p3332[0...n]	BI: 2-3-WIRE Control Command 3 / 2-3-WIRE CC_3

1.3.2 Drive Data Sets (DDS)

Product: SINAMICS G120 CU240, Version: 4402100, Language: eng, Type: DDS	
p0340[0...n]	Automatic calculation, motor/control parameters / Calc auto par
p0640[0...n]	Current limit / Current limit
p1001[0...n]	CO: Fixed speed setpoint 1 / n_set_fixed 1
p1002[0...n]	CO: Fixed speed setpoint $2 / \mathrm{n}$ _set_fixed 2
p1003[0...n]	CO: Fixed speed setpoint $3 / \mathrm{n}$ _set_fixed 3
p1004[0...n]	CO: Fixed speed setpoint $4 / \mathrm{n}$ _set_fixed 4
p1005[0...n]	CO: Fixed speed setpoint $5 / n /$ set_fixed 5
p1006[0...n]	CO: Fixed speed setpoint $6 / \mathrm{n}$ _set_fixed 6
p1007[0...n]	CO: Fixed speed setpoint $7 / \mathrm{n}$ _set_fixed 7
p1008[0...n]	CO: Fixed speed setpoint $8 / \mathrm{n}$ _set_fixed 8
p1009[0...n]	CO: Fixed speed setpoint $9 / \mathrm{n}$ _set_fixed 9
p1010[0...n]	CO: Fixed speed setpoint $10 / \mathrm{n}$ _set_fixed 10
p1011[0...n]	CO: Fixed speed setpoint 11 / n_set_fixed 11
p1012[0...n]	CO: Fixed speed setpoint 12 / n_set_fixed 12
p1013[0...n]	CO: Fixed speed setpoint $13 / \mathrm{n}$ _set_fixed 13
p1014[0...n]	CO: Fixed speed setpoint $14 / \mathrm{n}$ _set_fixed 14
p1015[0...n]	CO: Fixed speed setpoint 15 / n_set_fixed 15
p1030[0...n]	Motorized potentiometer configuration / Mop configuration
p1037[0...n]	Motorized potentiometer maximum speed / MotP n_max
p1038[0...n]	Motorized potentiometer minimum speed / MotP n_min
p1040[0...n]	Motorized potentiometer starting value / Mop start value
p1047[0...n]	Motorized potentiometer ramp-up time / Mop ramp-up time
p1048[0...n]	Motorized potentiometer ramp-down time / Mop ramp-down time
p1058[0...n]	Jog 1 speed setpoint / Jog 1 n_set
p1059[0...n]	Jog 2 speed setpoint / Jog 2 n_set
p1063[0...n]	Speed limit setpoint channel / n_limit setp
p1080[0...n]	Minimum speed / n_min
p1082[0...n]	Maximum speed / n_max
p1083[0...n]	CO: Speed limit in positive direction of rotation / n_limit pos
p1086[0...n]	CO: Speed limit in negative direction of rotation / n_limit neg
p1091[0...n]	Skip speed 1 / n_skip 1
p1092[0...n]	Skip speed 2 / n_skip 2
p1093[0...n]	Skip speed 3 / n_skip 3
p1094[0...n]	Skip speed 4 / n_skip 4

p1101[0...n] Skip speed bandwidth / n_skip bandwidth
p1120[0...n] Ramp-function generator ramp-up time / RFG ramp-up time
p1121[0...n] Ramp-function generator ramp-down time / RFG ramp-down time
p1123[0...n] Ramp-function generator minimum ramp-up time / RFG t_RU min
p1127[0...n] Ramp-function generator minimum ramp-down time / RFG t_RD min
p1130[0...n] Ramp-function generator initial rounding-off time / RFG t_start_round
p1131[0...n] Ramp-function generator final rounding-off time / RFG t_end_delay
p1134[0...n] Ramp-function generator rounding-off type / RFG round-off type
p1135[0...n] OFF3 ramp-down time / OFF3 t_RD
p1136[0...n] OFF3 initial rounding-off time / RFGOFF3 t_strt_rnd
p1137[0...n] OFF3 final rounding-off time / RFG OFF3 t_end_del
p1145[0...n] Ramp-function generator tracking intensity. / RFG track intens
p1148[0...n] Ramp-function gen., tolerance for ramp-up and ramp-down active / RFG tol HL/RL act
p1200[0...n] FlyRest oper mode / FlyRest op_mode
p1202[0...n] FlyRest srch curr / FlyRest I_srch
p1203[0...n] Flying restart search rate factor / FlyRst v_Srch Fact
p1226[0...n] Threshold for zero speed detection / n_standst n_thresh
p1240[0...n] Vdc controller or Vdc monitoring configuration (vector control) / Vdc_ctr config vec
p1243[0...n] Vdc_max controller dynamic factor / Vdc_max dyn_factor
p1245[0...n] Vdc_min controller switch-in level (kinetic buffering) / Vdc_min on_level
p1247[0...n] Vdc_min controller dynamic factor (kinetic buffering) / Vdc_min dyn_factor
p1249[0...n] Vdc_max controller speed threshold / Vdc_max n_thresh
p1250[0...n] Vdc controller proportional gain / Vdc_ctrl Kp
p1251[0...n] Vdc controller integral time / Vdc_ctrl Tn
p1252[0...n] Vdc controller rate time / Vdc_ctrl t_rate
p1255[0...n] Vdc_min controller time threshold / Vdc_min t_thresh
p1256[0...n] Vdc_min controller response (kinetic buffering) / Vdc_min response
p1257[0...n] Vdc_min controller speed threshold / Vdc_min n_thresh
p1280[0...n] Vdc controller or Vdc monitoring configuration (U/f) / Vdc_ctr config U/f
p1283[0...n] Vdc_max controller dynamic factor (U/f) / Vdc_max dyn_factor
p1285[0...n] Vdc_min controller switch-in level (kinetic buffering) (U/f) / Vdc_min on_level
p1287[0...n] Vdc_min controller dynamic factor (kinetic buffering) (U/f) / Vdc_min dyn_factor
p1288[0...n] Vdc_max controller feedback coupling factor ramp-fct. gen. (U/f) / Vdc_max factor RFG
p1290[0...n] Vdc controller proportional gain (U/f) / Vdc_ctrl Kp
p1291[0...n] Vdc controller integral time (U/f) / Vdc_ctrl Tn
p1292[0...n] Vdc controller rate time (U/f) / Vdc_ctrl t_rate
p1293[0...n] Vdc min controller output limit (U/f) / Vdc_min outp_lim
p1295[0...n] Vdc_min controller time threshold (U/f) / Vdc_min t_thresh
p1296[0...n] Vdc_min controller response (kinetic buffering) (U/f / Vdc_min response
p1297[0...n] Vdc_min controller speed threshold (U/f) / Vdc_min n_thresh
p1300[0...n] Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode
p1310[0...n] Voltage boost permanent / U_boost perm
p1311[0...n] Voltage boost at acceleration / U_boost accelerate
p1312[0...n] Voltage boost when starting / U_boost starting
p1320[0...n] U/f control programmable characteristic frequency 1 / Uf char f1
p1321[0...n] U/f control programmable characteristic voltage 1 / Uf char U1
p1322[0...n] U/f control programmable characteristic frequency 2 / Uf char f2
p1323[0...n] U/f control programmable characteristic voltage 2 / Uf char U2
$\mathrm{p} 1324[0 \ldots \mathrm{n}] \quad \mathrm{U} / \mathrm{f}$ control programmable characteristic frequency 3 / Uf char f3
p1325[0...n] U/f control programmable characteristic voltage 3 / Uf char U3
p1326[0...n] U/f control programmable characteristic frequency 4 / Uf char f4
p1327[0...n] U/f control programmable characteristic voltage 4 / Uf char U4
p1333[0...n] U/f control FCC starting frequency / U/f FCC f_start

p1334[0...n]	U/f control slip compensation starting frequency / Slip comp start
p1335[0...n]	Slip compensation, scaling / Slip comp scal
p1336[0...n]	Slip compensation limit value / Slip comp lim val
p1338[0...n]	U/f mode resonance damping gain / Uf Res_damp gain
p1339[0...n]	U/f mode resonance damping filter time constant / Uf Res_damp T
p1340[0...n]	I_max frequency controller proportional gain / I_max_ctrl Kp
p1341[0...n]	I_max frequency controller integral time / I_max_ctrl Tn
p1345[0...n]	I_max voltage controller proportional gain / __max_U_ctrl Kp
p1346[0...n]	I_max voltage controller integral time / I_max_U_ctrl Tn
p1349[0...n]	U/f mode resonance damping maximum frequency / Uf res_damp f_max
p1350[0...n]	Soft starting / Soft starting
p1351[0...n]	CO: Motor holding brake starting frequency / Brake f_start
p1400[0...n]	Speed control configuration / n_ctrl config
p1401[0...n]	Flux control configuration / Flux ctrl config
p1402[0...n]	Closed-loop current control and motor model configuration / _ctrl config
p1416[0...n]	Speed setpoint filter 1 time constant / n_set_filt 1 T
p1452[0...n]	Speed controller speed actual value smoothing time (SLVC) / n_C n_act T_s SLVC
p1456[0...n]	Speed controller P gain adaptation lower starting point / n_ctrl AdaptKpLow
p1457[0...n]	Speed controller P gain adaptation upper starting point / n_ctrl AdaptKp up
p1458[0...n]	Adaptation factor, lower / Adapt_factor lower
p1459[0...n]	Adaptation factor, upper / Adapt_factor upper
p1461[0...n]	Speed controller Kp adaptation speed, upper scaling / n_ctrl Kp n upper
p1463[0...n]	Speed controller Tn adaptation speed, upper scaling / n_ctrl Tn n upper
p1464[0...n]	Speed controller adaptation speed, lower / n_ctrl n lower
p1465[0...n]	Speed controller adaptation speed, upper / n_ctrl n upper
p1470[0...n]	Speed controller encoderless operation P-gain / n_ctrl SLVC Kp
p1472[0...n]	Speed controller encoderless operation integral time / n_ctrl SLVC Tn
p1487[0...n]	Droop compensation torque scaling / Droop M_comp scal
p1488[0...n]	Droop input source / Droop input source
p1489[0...n]	Droop feedback scaling / Droop scaling
p1496[0...n]	Acceleration pre-control scaling / a_before scaling
p1499[0...n]	Accelerating for torque control, scaling / a for M_ctrl scal
p1514[0...n]	Supplementary torque 2 scaling / M_suppl 2 scal
p1517[0...n]	Accelerating torque smoothing time constant / M_accel T_smooth
p1520[0...n]	CO: Torque limit upper / M_max upper
p1521[0...n]	CO: Torque limit lower / M_max lower
p1524[0...n]	CO: Torque limit upper/motoring scaling / M_max up/mot scal
p1525[0...n]	CO: Torque limit lower scaling / M_max lower scal
p1530[0...n]	Power limit motoring / P_max mot
p1531[0...n]	Power limit regenerative / $P_{\text {_ max }}$ gen
p1570[0...n]	CO: Flux setpoint / Flux setpoint
p1573[0...n]	Flux threshold value magnetizing / Flux thresh magnet
p1574[0...n]	Voltage reserve dynamic / U_reserve dyn
p1580[0...n]	Efficiency optimization / Efficiency opt.
p1582[0...n]	Flux setpoint smoothing time / Flux setp T_smth
p1584[0...n]	Field weakening operation, flux setpoint smoothing time / Field weak T_smth
p1594[0...n]	Field-weakening controller, P gain / Field_ctrl Kp
p1596[0...n]	Field weakening controller integral-action time / Field_ctrl Tn
p1610[0...n]	Torque setpoint static (SLVC) / M_set static
p1611[0...n]	Supplementary accelerating torque (SLVC) / M_suppl_accel
p1616[0...n]	Current setpoint smoothing time / I_set T_smooth
$\mathrm{p} 1654[0 \ldots \mathrm{n}]$	Curr. setpoint torque-gen. smoothing time field weakening range / Isq_s T_smth FW
p1702[0...n]	Isd current controller pre-control scaling / Isd_ctr_prectrScal

p1703[0...n]	Isq current controller pre-control scaling / Isq_ctr_prectrScal
p1715[0...n]	Current controller P gain / __ctrl Kp
p1717[0...n]	Current controller integral-action time / I_ctrl Tn
p1726[0...n]	Quadrature arm decoupling, scaling / Transv_decpl scal
p1727[0...n]	Quadrature arm decoupling at voltage limit scaling / TrnsvDecpIVmaxScal
p1730[0...n]	Isd controller integral component shutdown threshold / Isd_ctrl I_thresh
p1740[0...n]	Gain resonance damping for encoderless closed-loop control / Gain res_damp
p1745[0...n]	Motor model error threshold stall detection / MotMod ThreshStall
p1750[0...n]	Motor model configuration / MotMod config
p1755[0...n]	Motor model changeover speed encoderless operation / MotMod n_chgSnsorl
p1758[0...n]	Motor model changeover delay time closed/open-loop control / MotMod t cl_op
p1759[0...n]	Motor model changeover delay time open/closed-loop control / MotMod top_cl
p1764[0...n]	Motor model without encoder speed adaptation Kp / MotMod woE n_adaKp
p1767[0...n]	Motor model without encoder speed adaptation Tn / MotMod woE n_adaTn
p1774[0...n]	Motor model, offset voltage compensation alpha / MotMod offs comp A
p1775[0...n]	Motor model, offset voltage compensation beta / MotMod offs comp B
p1780[0...n]	Motor model adaptation configuration / MotMod adapt conf
p1784[0...n]	Motor model feedback scaling / Mod_FB_scal
p1785[0...n]	Motor model Lh adaptation Kp / MotMod Lh Kp
p1786[0...n]	Motor model Lh adaptation integral time / MotMod Lh Tn
r1787[0...n]	Motor model Lh adaptation corrective value / MotMod Lh corr
p1795[0...n]	Motor model kT adaptation integral time / MotMod kT Tn
r1797[0...n]	Motor model kT adaptation corrective value / MotMod kT corr
p1800[0...n]	Pulse frequency setpoint / Pulse freq setp
p1802[0...n]	Modulator mode / Modulator mode
p1803[0...n]	Maximum modulation depth / Modulat depth max
p1806[0...n]	Filter time constant Vdc correction / T_filt Vdc_corr
p1820[0...n]	Reverse the output phase sequence / Outp_ph_seq rev
p1959[0...n]	Rotating measurement configuration / Rot meas config
p2140[0...n]	Hysteresis speed 2 / n_hysteresis 2
p2141[0...n]	
p2142[0...n]	Hysteresis speed 1 / n_hysteresis 1
p2149[0...n]	Monitoring configuration / Monit config
p2150[0...n]	Hysteresis speed 3 / n_hysteresis 3
p2152[0...n]	Delay for comparison $\mathrm{n}>\mathrm{n}$ max / Del $\mathrm{n}>\mathrm{n}$ _max
p2153[0...n]	Speed actual value filter time constant/n_act_filt T
p2155[0...n]	Speed threshold 2 / n_thresh val 2
p2156[0...n]	On delay, comparison value reached / t_on cmpr val rchd
p2157[0...n]	Speed threshold 5 / n_thresh val 5
p2158[0...n]	Delay for n_act comparison with speed threshold value 5 / Del compar n_5
p2159[0...n]	Speed threshold 6 / n_thresh val 6
p2160[0...n]	Delay for n_act comparison with speed threshold value 6 / Del compar n_6
p2161[0...n]	Speed threshold 3 / n_thresh val 3
p2162[0...n]	Hysteresis speed n_act > n_max / Hyst n_act>n_max
p2163[0...n]	Speed threshold 4/n_thresh val 4
p2164[0...n]	Hysteresis speed 4 / n_hysteresis 4
p2166[0...n]	Off delay n_act = n_set / t_del_off n_i=n_so
p2167[0...n]	Switch-on delay n_act = n_set / t_on n_act=n_set
p2170[0...n]	Current threshold value / I_thres
p2171[0...n]	Current threshold value reached delay time / t_del I_thresh rch
p2172[0...n]	DC link voltage, threshold value / Vdc thresh val
p2173[0...n]	DC link voltage comparison delay time / t_del Vdc
p2174[0...n]	Torque threshold value 1 / M_thresh val 1

p2175[0...n] Motor locked speed threshold / Mot lock n_thresh
p2176[0...n] Torque threshold value comparison delay time / M_thrsh comp T_del
p2177[0...n] Motor locked delay time / Mot lock t_del
p2178[0...n] Motor stalled delay time / Mot stall t_del
p2179[0...n] Output load identification current limit / Outp_Id iden I_lim
p2180[0...n] Missing output load delay time / No load t_delay
p2181[0...n] Load monitoring response / Load monit resp
p2182[0...n] Load monitoring speed threshold value 1 / n_thresh 1
p2183[0...n] Load monitoring speed threshold value 2 / n_thresh 2
p2184[0...n] Load monitoring speed threshold value 3 / n_thresh 3
p2185[0...n] Load monitoring torque threshold 1, upper / M_thresh 1 upper
p2186[0...n] Load monitoring torque threshold 1, lower / M_thresh 1 lower
p2187[0...n] Load monitoring torque threshold 2, upper / M_thresh 2 upper
p2188[0...n] Load monitoring torque threshold 2, lower / M_thresh 2 lower
p2189[0...n] Load monitoring torque threshold 3, upper / M_thresh 3 upper
p2190[0...n] Load monitoring torque threshold 3, lower / M_thresh 3 lower
p2192[0...n] Load monitoring delay time / Load monit t_del
p2193[0...n] Load monitoring configuration / Load monit config
p2194[0...n] Torque threshold value 2 / M_thresh val 2
p2195[0...n] Torque utilization switch-off delay / M_util t_off
p2196[0...n] Torque utilization scaling / M_util scal
p2201[0...n] CO: Technology controller, fixed value 1 / Tec_ctr fix val 1
p2202[0...n]
p2203[0...n]
p2204[0...n]
p2205[0...n]
p2206[0...n]
p2207[0...n]
p2208[0...n]
p2209[0...n]
p2210[0...n]
p2211[0...n]
p2212[0...n]
p2213[0...n]
p2214[0...n]
p2215[0...n]
p2216[0...n]
p2230[0...n]
p2237[0...n
p2238[0...
p2240[0...
p2247[0...
p2248[0...n]
p2900[0...n]
p2901[0...n]
p2930[0...n
CO: Technology controller, fixed value 2 / Tec_ctr fix val 2
CO: Technology controller, fixed value 3 / Tec_ctr fix val 3
CO: Technology controller, fixed value 4 / Tec_ctr fix val 4
CO: Technology controller, fixed value 5 / Tec_ctr fix val 5
CO: Technology controller, fixed value 6 / Tec_ctr fix val 6
CO: Technology controller, fixed value 7 / Tec_ctr fix val 7
CO: Technology controller, fixed value 8 / Tec_ctr fix val 8
CO: Technology controller, fixed value 9 / Tec_ctr fix val 9
CO: Technology controller, fixed value 10 / Tec_ctr fix val 10
CO: Technology controller, fixed value 11 / Tec_ctr fix val 11
CO: Technology controller, fixed value 12 / Tec_ctr fix val 12
CO: Technology controller, fixed value 13 / Tec_ctr fix val 13
CO: Technology controller, fixed value 14 / Tec_ctr fix val 14
CO: Technology controller, fixed value 15 / Tec_ctr fix val 15
Technology controller fixed value selection method / Tec_ctr FixVal sel
Technology controller motorized potentiometer configuration / Tec_ctr mop config
Technology controller motorized potentiometer maximum value / Tec_ctrl mop max Technology controller motorized potentiometer minimum value / Tec_ctrl mop min Technology controller motorized potentiometer starting value / Tec_ctrl mop start
Technology controller motorized potentiometer ramp-up time / Tec_ctr mop t_r-up
Technology controller motorized potentiometer ramp-down time / Tec_ctrMop t_rdown
CO: Fixed value 1 [\%] / Fixed value 1 [\%]
CO: Fixed value 2 [\%] / Fixed value 2 [\%]
CO: Fixed value M [Nm] / Fixed value $\mathrm{M}[\mathrm{Nm}]$
p3231[0...n] Load monitoring speed deviation / Load monit n_dev
p3233[0...n] Torque actual value filter, time constant / M_act_filt T
p3320[0...n] Fluid flow machine $P=f(n), Y$ coordinate: P flow1 \%, point $1 /$ Fluid flow mach $Y 1$
p3321[0...n] Fluid flow machine $P=f(n), X$ coordinate: n flow1 \%, point $1 /$ Fluid flow mach $X 1$
p3322[0...n] Fluid flow machine $P=f(n), Y$ coordinate: P flow2 \%, point $2 /$ Fluid flow mach $Y 2$
p3323[0...n] Fluid flow machine $P=f(n), X$ coordinate: n flow2 \%, point 2 / Fluid flow mach X2
p3324[0...n] Fluid flow machine $P=f(n), Y$ coordinate: P flow3 \%, point $3 /$ Fluid flow mach $Y 3$

p3325[0...n]	Fluid flow machine $P=f(n), X$ coordinate: n flow3 \%, point $3 /$ Fluid flow mach X3
p3326[0..n]	Fluid flow machine $P=f(n), Y$ coordinate: P flow4 \%, point $4 /$ Fluid flow mach Y4
p3327[0..n]	Fluid flow machine $P=f(n), X$ coordinate: n flow4 \%, point $4 /$ Fluid flow mach X4
p3328[0...n]	Fluid flow machine $P=f(n), Y$ coordinate: P flow5 \%, point $5 /$ Fluid flow mach Y5
p3329[0...n]	Fluid flow machine $P=f(n), X$ coordinate: n flow5 \%, point $5 /$ Fluid flow mach X5
p3856[0...n]	Compound braking current / Compound I_brake
r3925[0...n]	Identification final display / Ident final_disp
r3927[0...n]	Motor data identification control word / MotID STW
r3928[0...n]	Rotating measurement configuration / Rot meas config
$r 3929[0 \ldots n]$	Motor data identification modulated voltage generation / MotID U_gen mod

1.3.3 Motor Data Sets (MDS)

p0300[0...n]	G120 CU240, Version: 4402100, Language: eng, Type: MDS Motor type selection / Mot type sel
p0301[0...n]	Motor code number selection / Mot code No. sel
p0304[0...n]	Rated motor voltage / Mot U_rated
p0305[0...n]	Rated motor current / Mot I_rated
p0307[0...n]	Rated motor power / Mot P_rated
p0308[0...n]	Rated motor power factor / Mot cos_phi_rated
p0309[0...n]	Rated motor efficiency / Mot eta_rated
p0310[0...n]	Rated motor frequency / Mot f_rated
p0311[0...n]	Rated motor speed / Mot n_rated
r0313[0...n]	Motor pole pair number, actual (or calculated) / Mot PolePairNo act
p0314[0...n]	Motor pole pair number / Mot pole pair No.
p0316[0...n]	Motor torque constant / Mot kT
p0318[0...n]	Motor stall current / Mot I_standstill
p0320[0...n]	Motor rated magnetizing current/short-circuit current / Mot I_mag_rated
p0322[0...n]	Maximum motor speed / Mot n_max
p0323[0...n]	Maximum motor current / Mot I_max
p0325[0...n]	Motor pole position identification current, 1st phase / Mot PolID I 1st ph
p0326[0...n]	Motor stall torque correction factor / Mot M_stall_corr
p0327[0...n]	Optimum motor load angle / Mot phi_load opt
p0328[0...n]	Motor reluctance torque constant / Mot kT_reluctance
p0329[0...n]	Motor pole position identification current / Mot PolID current
r0330[0...n]	Rated motor slip / Mot slip_rated
r0331[0...n]	Actual motor magnetizing current/short-circuit current / Mot I_mag_rtd act
r0332[0...n]	Rated motor power factor / Mot cos_phi_rated
r0333[0...n]	Rated motor torque / Mot M_rated
r0334[0...n]	Actual motor-torque constant / Mot kT act
p0335[0...n]	Motor cooling type / Motor cooling type
r0337[0...n]	Rated motor EMF / Mot EMF_rated
p0341[0...n]	Motor moment of inertia / Mot M_mom of inert
p0342[0...n]	Ratio between the total and motor moment of inertia / Mot Mominert Ratio
r0343[0...n]	Rated motor current identified / Mot I_rated ident
p0344[0...n]	Motor weight (for the thermal motor model) / Mot weight th mod
r0345[0...n]	Nominal motor starting time / Mot t_start_rated
p0346[0...n]	Motor excitation build-up time / Mot t_excitation
p0347[0...n]	Motor de-excitation time / Mot t_de-excitat.
p0350[0...n]	Motor stator resistance, cold / Mot R_stator cold
p0352[0...n]	Cable resistance / Mot R_cable cold

p0354[0...n] Motor rotor resistance cold / Mot R_r cold
p0356[0...n] Motor stator leakage inductance / Mot L_stator leak.
p0357[0...n] Motor stator inductance, d axis / Mot L_stator d
p0358[0...n] Motor rotor leakage inductance / Mot L_rot leak
p0360[0...n] Motor magnetizing inductance / Mot Lh
p0362[0...n] Motor saturation characteristic flux 1 / Mot saturat.flux 1
p0363[0...n] Motor saturation characteristic flux 2 / Mot saturat.flux 2
p0364[0...n] Motor saturation characteristic flux 3 / Mot saturat.flux 3
p0365[0...n] Motor saturation characteristic flux 4 / Mot saturat.flux 4
p0366[0...n] Motor saturation characteristic I_mag 1 / Mot sat. I_mag 1
p0367[0...n] Motor saturation characteristic I_mag 2 / Mot sat. I_mag 2
p0368[0...n] Motor saturation characteristic I_mag 3 / Mot sat. I_mag 3
p0369[0...n] Motor saturation characteristic I_mag 4 / Mot sat. I_mag 4
r0370[0...n] Motor stator resistance, cold / Mot R_stator cold
r0372[0...n] Cable resistance / Mot R_cable
r0373[0...n] Motor rated stator resistance / Mot R_stator rated
r0374[0...n] Motor rotor resistance cold / Mot R_r cold
r0376[0...n] Rated motor rotor resistance / Mot R_rotor rated
r0377[0...n] Motor leakage inductance, total / Mot L_leak total
r0378[0...n] Motor stator inductance, d axis / Mot L_stator_d
r0382[0...n] Motor magnetizing inductance transformed / Mot L_magn transf
r0384[0...n] Motor rotor time constant / damping time constant d axis / Mot T_rotor/T_Dd
r0386[0...n] Motor stator leakage time constant / Mot T_stator leak
r0395[0...n] Actual stator resistance / R_stator act
r0396[0...n] Actual rotor resistance / R_rotor act
p0601[0...n] Motor temperature sensor type / Mot_temp_sens type
p0604[0...n] Motor temperature alarm threshold / Mot_temp al thr
p0605[0...n] Motor temperature fault threshold / Mot_temp flt thr
p0606[0...n] Motor temperature timer / Mot_temp timer
p0607[0...n] Temperature sensor fault timer / Sensor fault time
p0610[0...n] Motor overtemperature response / Mot temp response
p0611[0...n] I2t motor model thermal time constant / I2t mot_mod T
p0612[0...n] Thermal motor model configuration / Therm Mot_mod conf
p0615[0...n] I2t motor model fault threshold / I2t mot_mod thresh
p0620[0...n] Thermal adaptation, stator and rotor resistance / Mot therm_adapt R
p0621[0...n] Identification stator resistance after restart / Rst_ident Restart
p0622[0...n] Motor excitation time for Rs_ident after powering up again / t_excit Rs_id
p0625[0...n] Motor ambient temperature / Mot T_ambient
p0626[0...n] Motor overtemperature, stator core / Mot T_over core
p0627[0...n] Motor overtemperature, stator winding / Mot T_over stator
p0628[0...n] Motor overtemperature rotor winding / Mot T_over rotor
r0630[0...n] Motor temperature model ambient temperature / MotTMod T_amb.
r0631[0...n] Motor temperature model, stator core temperature / MotTMod T_core
r0632[0...n] Motor temperature model, stator winding temperature / MotTMod T_copper
r0633[0...n] Motor temperature model, rotor temperature / MotTMod T_rotor
p0634[0...n] Q flux flux constant unsaturated / PSIQ KPSI UNSAT
p0635[0...n] Q flux quadrature axis current constant unsaturated / PSIQ KIQ UNSAT
p0636[0...n] Q flux direct axis current constant unsaturated / PSIQ KID UNSAT
p0637[0...n] Q flux flux gradient saturated / PSIQ Grad SAT
p0650[0...n] Actual motor operating hours / Mot t_oper act
p0651[0...n] Motor operating hours maintenance interval / Mot t_op maint
p0826[0...n] Motor changeover, motor number / Mot_chng mot No.
p1231[0...n] DC braking configuration / DCBRK config

```
p1232[0...n] DC braking, braking current / DCBRK I_brake
p1233[0...n] DC braking time / DCBRK time
p1234[0...n] Speed ta the start of DC braking / DCBRK n_start
p1909[0...n] Motor data identification control word / MotID STW
p1980[0...n] PolID technique / PolID technique
p1999[0..n] Ang.commutation offset calibr. and PollD scaling / Com_ang_offs scal
r3926[0..n] Alternating voltage generation base voltage amplitude / Alt U_gen U_base
```


1.3.4 Power unit Data Set (PDS)

Product: SINAMICS G120 CU240, Version: 4402100, Language: eng, Type: PDS r0200[0...n] Power unit code number actual / PU code no. act
p0201[0...n] Power unit code number / PU code no
r0203[0...n] Actual power unit type / PU actual type
r0204[0...n] Power unit hardware properties / PU HW property

1.4 Connector/Binector (BICO)-Parameters

1.4.1 Binector Input Parameters

Product: SINAMICS G120 CU240, Version: 4402100, Language: eng, Type: BI
p0730 BI: CU signal source for terminal DO 0 / CU S_src DO 0
p0731 BI: CU signal source for terminal DO 1 / CU S_src DO 1
p0732 BI: CU signal source for terminal DO 2 / CU S_src DO 2
p0782[0...1] BI: CU analog outputs invert signal source / CU AO inv S_src
p0806 BI: Inhibit master control / PcCtrl inhibit
p0810 BI: Command data set selection CDS bit 0 / CDS select., bit 0
p0811 BI: Command data set selection CDS bit 1 / CDS select., bit 1
p0820[0...n] BI: Drive Data Set selection DDS bit 0 / DDS select., bit 0
p0821[0...n] BI: Drive Data Set selection DDS bit 1 / DDS select., bit 1
p0840[0...n] BI: ON / OFF (OFF1) / ON / OFF (OFF1)
p0844[0...n] BI: No coast-down / coast-down (OFF2) signal source 1 / OFF2 S_src 1
p0845[0...n] BI: No coast-down / coast-down (OFF2) signal source 2 / OFF2 S_src 2
p0848[0...n] BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_src 1
p0849[0...n] BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_src 2
p0852[0...n] BI: Enable operation/inhibit operation / Operation enable
p0854[0...n] BI: Control by PLC/no control by PLC / Master ctrl by PLC
p0855[0...n] BI: Unconditionally release holding brake / Uncond open brake
p0856[0...n] BI: Speed controller enable / n_ctrl enable
p0858[0...n] BI: Unconditionally close holding brake / Uncond close brake
p0897 BI: Parking axis selection / Parking axis sel
p1020[0...n] BI: Fixed speed setpoint selection Bit 0 / n_set_fixed Bit 0
p1021[0...n] BI: Fixed speed setpoint selection Bit 1 / n_set_fixed Bit 1
p1022[0...n] BI: Fixed speed setpoint selection Bit $2 / n _$set_fixed Bit 2
p1023[0...n] BI: Fixed speed setpoint selection Bit 3 / n_set_fixed Bit 3
p1035[0...n] BI: Motorized potentiometer setpoint raise / Mop raise
p1036[0...n] BI: Motorized potentiometer lower setpoint / Mop lower
p1039[0...n] BI: Motorized potentiometer inversion / MotP inv
p1041[0...n] BI: Motorized potentiometer manual/automatic / Mop manual/auto
p1043[0...n] BI: Motorized potentiometer accept setting value / MotP acc set val
p1055[0...n] BI: Jog bit $0 / \mathrm{Jog}$ bit 0
p1056[0...n] BI: Jog bit $1 /$ Jog bit 1
p1108[0...n] BI: Total setpoint selection / Total setp sel
p1110[0...n] BI: Inhibit negative direction / Inhib neg dir
p1111[0...n] BI: Inhibit positive direction / Inhib pos dir
p1113[0...n] BI: Setpoint inversion / Setp inv
p1122[0...n] BI: Bypass ramp-function generator / Bypass RFG
p1140[0...n] BI: Enable ramp-function generator/inhibit ramp-function generator / RFG enable
p1141[0...n] BI: Continue ramp-function generator/freeze ramp-function generator / Continue RFG
p1142[0...n] BI: Enable setpoint/inhibit setpoint / Setpoint enable
p1143[0...n] BI: Ramp-function generator, accept setting value / RFG accept set v
p1201[0...n] BI: Flying restart enable signal source / Fly_res enab S_src
p1230[0...n] BI: DC braking activation / DC brake act
p1476[0...n] BI: Speed controller hold integrator / n_ctrl integ stop
p1477[0...n] BI: Speed controller set integrator value / n_ctrl integ set
p1492[0...n] BI: Droop feedback enable / Droop enable
p1501[0...n] BI: Change over between closed-loop speed/torque control / Changeov n/M_ctrl
p2080[0...15] BI: Binector-connector converter status word 1 / Bin/con ZSW1
p2081[0...15] BI: Binector-connector converter status word 2 / Bin/con ZSW2
p2082[0...15] BI: Binector-connector converter status word 3 / Bin/con ZSW3
p2083[0...15] BI: Binector-connector converter status word 4 / Bin/con ZSW4
p2084[0...15] BI: Binector-connector converter status word 5 / Bin/con ZSW5
p2103[0...n] BI: 1. Acknowledge faults / 1. Acknowledge
p2104[0...n] BI: 2. Acknowledge faults / 2. Acknowledge
p2105[0...n] BI: 3. Acknowledge faults / 3. Acknowledge
p2106[0...n] BI: External fault 1 / External fault 1
p2107[0...n] BI: External fault 2 / External fault 2
p2108[0...n] BI: External fault 3 / External fault 3
p2112[0...n] BI: External alarm 1 / External alarm 1
p2116[0...n] BI: External alarm 2 / External alarm 2
p2117[0...n] BI: External alarm 3 / External alarm 3
p2144[0...n] BI: Motor stall monitoring enable (negated) / Mot stall enab neg
p2148[0...n] BI: RFG active / RFG active
p2200[0...n] BI: Technology controller enable / Tec_ctrl enable
p2220[0...n] BI: Technology controller fixed value selection bit $0 /$ Tec_ctrl sel bit 0
p2221[0...n] BI: Technology controller fixed value selection bit 1 / Tec_ctrl sel bit 1
p2222[0...n] BI: Technology controller fixed value selection bit $2 /$ Tec_ctrl sel bit 2
p2223[0...n] BI: Technology controller fixed value selection bit 3 / Tec_ctrl sel bit 3
p2235[0...n] BI: Technology controller motorized potentiometer raise setpoint / Tec_ctrl mop raise
p2236[0...n] BI: Technology controller motorized potentiometer lower setpoint / Tec_ctrl mop lower
p2286[0...n] BI: Hold technology controller integrator / Tec_ctr integ stop
p3111[0...n] BI: External fault 3, enable / Ext fault 3 enab
p3112[0...n] BI: External fault 3 enable negated / Ext flt 3 enab neg
p3232[0...n] BI: Load monitoring failure detection / Load_moni fail_det
p3330[0...n] BI: 2-3-WIRE Control Command 1 / 2-3-WIRE CC_1
p3331[0...n] BI: 2-3-WIRE Control Command 2 / 2-3-WIRE CC_2
p3332[0...n] BI: 2-3-WIRE Control Command 3 / 2-3-WIRE CC_3
p9705 BI: SI Motion: Test stop signal source / SI Mtn test stop
p20030[0...3] BI: AND 0 inputs / AND 0 inputs
p20034[0...3] BI: AND 1 inputs / AND 1 inputs
p20038[0...3] BI: AND 2 inputs / AND 2 inputs
p20042[0...3] BI: AND 3 inputs / AND 3 inputs
p20046[0...3] BI: OR 0 inputs / OR 0 inputs
p20050[0...3] BI: OR 1 inputs / OR 1 inputs
p20054[0...3] BI: OR 2 inputs / OR 2 inputs
p20058[0...3] BI: OR 3 inputs / OR 3 inputs
p20062[0...3] BI: XOR 0 inputs / XOR 0 inputs
p20066[0...3] BI: XOR 1 inputs / XOR 1 inputs
p20070[0...3] BI: XOR 2 inputs / XOR 2 inputs
p20074[0...3] BI: XOR 3 inputs / XOR 3 inputs
p20078 BI: NOT 0 input I / NOT 0 input I
p20082 BI: NOT 1 input I / NOT 1 input I
p20086 BI: NOT 2 input I / NOT 2 input I
p20090 BI: NOT 3 input I / NOT 3 input I
p20138 BI: MFP 0 input pulse I / MFP 0 inp_pulse I
p20143 BI: MFP 1 input pulse I / MFP 1 inp_pulse I
p20148 BI: PCL 0 input pulse I / PCL 0 inp_pulse I
p20153 BI: PCL 1 input pulse I / PCL 1 inp_pulse I
p20158 BI: PDE 0 input pulse I / PDE 0 inp_pulse I

p20163	BI: PDE 1 input pulse I / PDE 1 inp_pulse I
p20168	BI: PDF 0 input pulse I / PDF 0 inp_pulse I
p20173	BI: PDF 1 input pulse I / PDF 1 inp_pulse I
p20178[0...1]	BI: PST 0 inputs / PST 0 inputs
p20183[0...1]	BI: PST 1 inputs / PST 1 inputs
p20188[0...1]	BI: RSR 0 inputs / RSR 0 inputs
p20193[0...1]	BI: RSR 1 inputs / RSR 1 inputs
p20198[0...3]	BI: DFR 0 inputs / DFR 0 inputs
p20203[0...3]	BI: DFR 1 inputs / DFR 1 inputs
p20208[0...1]	BI: BSW 0 inputs / BSW 0 inputs
p20209	BI: BSW 0 switch setting I / BSW 0 sw_setting
p20213[0...1]	BI: BSW 1 inputs / BSW 1 inputs
p20214	BI: BSW 1 switch setting I / BSW 1 sw_setting
p20219	BI: NSW 0 switch setting I / NSW 0 sw_setting
p20224	BI: NSW 1 switch setting I / NSW 1 sw_setting
p20245	BI: PT1 0 accept setting value S / PT1 0 acc set val
p20251	BI: PT1 1 accept setting value S / PT1 1 acc set val
p20260	BI: INT 0 accept setting value S / INT 0 acc set val
p20300	BI: NOT 4 input I / NOT 4 input I
p20304	BI: NOT 5 input I / NOT 5 input I
p20324[0...1]	BI: RSR 2 inputs / RSR 2 inputs
p20329[0...3]	BI: DFR 2 inputs / DFR 2 inputs
p20334	BI: PDE 2 input pulse I / PDE 2 inp_pulse I
p20339	BI: PDE 3 input pulse I / PDE 3 inp_pulse I
p20344	BI: PDF 2 input pulse I / PDF 2 inp_pulse I
p20349	BI: PDF 3 input pulse I / PDF 3 inp_pulse I
p20354	BI: MFP 2 input pulse I / MFP 2 inp_pulse I
p20359	BI: MFP 3 input pulse I / MFP 3 inp_pulse I

1.4.2 Connector Input Parameters

p0641[0...n]	G120 CU240, Version: 4402100, Language: eng, Type: CI CI: Current limit, variable / Curr lim var
p0771[0...1]	$\mathrm{CI}: \mathrm{CU}$ analog outputs signal source / CU AO S_src
p1042[0...n]	CI: Motorized potentiometer automatic setpoint / Mop auto setpoint
p1044[0...n]	Cl : Motorized potentiometer setting value / Mop set val
p1051[0...n]	Cl : Speed limit RFG positive direction of rotation / n_limit RFG pos
p1052[0...n]	CI: Speed limit RFG negative direction of rotation / n_limit RFG neg
p1070[0...n]	Cl : Main setpoint / Main setpoint
p1071[0...n]	CI: Main setpoint scaling / Main setp scal
p1075[0...n]	CI: Suppl setpoint / Suppl setpoint
p1076[0...n]	CI: Supplementary setpoint scaling / Suppl setp scal
p1085[0...n]	CI : Speed limit in positive direction of rotation / n_limit pos
p1088[0...n]	Cl : Speed limit in negative direction of rotation / n_limit neg
p1109[0...n]	Cl : Total setpoint / Total setp
p1144[0...n]	Cl : Ramp-function generator setting value / RFG setting value
p1155[0...n]	CI: Speed controller speed setpoint $1 / n _c t r l ~ n _s e t ~ 1 ~$
p1160[0...n]	CI: Speed controller speed setpoint 2 / n_ctrl n_set 2
p1330[0...n]	$\mathrm{CI}:$ U/f control independent voltage setpoint / Uf U_set independ.

p1352[0...n]	Cl : Motor holding brake starting frequency signal source / Brake f_start
p1455[0...n]	CI: Speed controller P gain adaptation signal / n_ctrl Adpt_sig Kp
p1466[0...n]	CI : Speed controller P-gain scaling / n _ctrl Kp scal
p1475[0...n]	CI : Speed controller torque setting value for motor holding brake / n_ctrl M_sv MHB
p1478[0...n]	Cl : Speed controller integrator setting value / n_ctr integ_setVal
p1479[0...n]	Cl : Speed controller integrator setting value scaling / n_ctrl I_val scal
p1486[0...n]	CI : Droop compensation torque / Droop M_comp
p1503[0...n]	CI: Torque setpoint / M_set
p1511[0...n]	CI: Supplementary torque 1 / M_suppl 1
p1512[0...n]	CI: Supplementary torque 1 scaling / M_suppl 1 scal
p1513[0...n]	Cl : Supplementary torque 2 / M_suppl 2
p1522[0...n]	CI : Torque limit upper / M_max upper
p1523[0...n]	Cl : Torque limit lower / M_max lower
p1528[0...n]	Cl : Torque limit upper scaling / M_max upper scal
p1529[0...n]	CI : Torque limit lower scaling / M_max lower scal
p1552[0...n]	Cl : Torque limit upper scaling without offset / M_max up w/o offs
p1554[0...n]	CI: Torque limit lower scaling without offset / M_max low w/o offs
p1571[0...n]	CI: Supplementary flux setpoint / Suppl flux setp
p2016[0...3]	CI: Comm IF USS PZD send word / Comm USS send word
p2051[0...7]	CI: PROFIdrive PZD send word / PZD send word
p2099[0...1]	CI: Connector-binector converter signal source / Con/bin S_src
p2151[0...n]	CI: Speed setpoint for messages/signals / n_set for msg
p2253[0...n]	Cl : Technology controller setpoint $1 / \mathrm{Tec}$ _ctrl setp 1
p2254[0...n]	CI: Technology controller setpoint 2 / Tec_ctrl setp 2
p2264[0...n]	CI: Technology controller actual value / Tec_ctrl act val
p2289[0...n]	CI: Technology controller pre-control signal / Tec_ctrl prectrl
p2296[0...n]	Cl : Technology controller output scaling / Tec_ctrl outp scal
p2297[0...n]	CI: Technology controller maximum limit signal source / Tec_ctrl m_Im s_sc
p2298[0...n]	Cl : Technology controller minimum limit signal source / Tec_ctrl min_I s_s
p2299[0...n]	CI: Technology controller limit offset / Tech_ctrl lim offs
p3230[0...n]	Cl : Load monitoring, speed actual value / Load monit n_act
p20094[0...3]	CI : ADD 0 inputs / ADD 0 inputs
p20098[0...3]	CI : ADD 1 inputs / ADD 1 inputs
p20102[0...1]	CI : SUB 0 inputs / SUB 0 inputs
p20106[0...1]	CI : SUB 1 inputs / SUB 1 inputs
p20110[0...3]	CI: MUL 0 inputs / MUL 0 inputs
p20114[0...3]	CI: MUL 1 inputs / MUL 1 inputs
p20118[0...1]	CI : DIV 0 inputs / DIV 0 inputs
p20123[0...1]	CI: DIV 1 inputs / DIV 1 inputs
p20128	CI: AVA 0 input X / AVA 0 input X
p20133	CI: AVA 1 input X / AVA 1 input X
p20218[0...1]	CI: NSW 0 inputs / NSW 0 inputs
p20223[0...1]	CI: NSW 1 inputs / NSW 1 inputs
p20228	CI: LIM 0 input X / LIM 0 input X
p20236	CI: LIM 1 input X / LIM 1 input X
p20244[0...1]	CI: PT1 0 inputs / PT1 0 inputs
p20250[0...1]	CI: PT1 1 inputs / PT1 1 inputs
p20256[0...1]	CI : INT 0 inputs / INT 0 inputs
p20266	CI: LVM 0 input $\mathrm{X} / \mathrm{LVM} 0$ input X
p20275	CI: LVM 1 input X / LVM 1 input X
p20284	CI: DIF 0 input $X /$ DIF 0 input X
p20308[0...3]	CI: ADD 2 inputs / ADD 2 inputs
p20312[0...1]	CI: NCM 0 inputs / NCM 0 inputs

p20318[0...1]	CI: NCM 1 inputs / NCM 1 inputs
p20372	CI: PLI 0 input X / PLI 0 input X
p20378	CI: PLI 1 input X / PLI 1 input X

1.4.3 Binector Output Parameters

r0751.0... 9	BO: CU analog inputs status word / CU AI status word
r0785.0... 1	BO: CU analog outputs status word / CU AO ZSW
r0807.0	BO: Master control active / PcCtrl active
r1025.0	BO: Fixed speed setpoint status / n_setp_fix status
r2043.0... 2	BO: PROFIdrive PZD state / PD PZD state
r2090.0... 15	BO: PROFIdrive PZD1 receive bit-serial / PZD1 recv bitw
r2091.0... 15	BO: PROFIdrive PZD2 receive bit-serial / PZD2 recv bitw
r2092.0... 15	BO: PROFIdrive PZD3 receive bit-serial / PZD3 recv bitw
r2093.0... 15	BO: PROFIdrive PZD4 receive bit-serial / PZD4 recv bitw
r2094.0... 15	BO: Connector-binector converter binector output / Con/bin outp
r2095.0... 15	BO: Connector-binector converter binector output / Con/bin outp
r9935.0	BO: POWER ON delay signal / POWER ON t_delay
r20031	BO: AND 0 output Q / AND 0 output Q
r20035	BO: AND 1 output Q / AND 1 output Q
r20039	BO: AND 2 output Q / AND 2 output Q
r20043	BO: AND 3 output Q / AND 3 output Q
r20047	BO: OR 0 output Q / OR 0 output Q
r20051	BO: OR 1 output Q / OR 1 output Q
r20055	BO: OR 2 output Q / OR 2 output Q
r20059	BO: OR 3 output Q / OR 3 output Q
r20063	BO: XOR 0 output Q / XOR 0 output Q
r20067	BO: XOR 1 output Q / XOR 1 output Q
r20071	BO: XOR 2 output Q / XOR 2 output Q
r20075	BO: XOR 3 output Q / XOR 3 output Q
r20079	BO: NOT 0 inverted output / NOT 0 inv output
r20083	BO: NOT 1 inverted output / NOT 1 inv output
r20087	BO: NOT 2 inverted output / NOT 2 inv output
r20091	BO: NOT 3 inverted output / NOT 3 inv output
r20120	BO: DIV 0 divisor is zero QF / DIV 0 divisor=0 QF
r20125	BO: DIV 1 divisor is zero QF / DIV 1 divisor=0 QF
r20130	BO: AVA 0 input negative SN / AVA 0 input neg SN
r20135	BO: AVA 1 input negative SN / AVA 1 input neg SN
r20140	BO: MFP 0 output Q / MFP 0 output Q
r20145	BO: MFP 1 output Q / MFP 1 output Q
r20150	BO: PCL 0 output Q / PCL 0 output Q
r20155	BO: PCL 1 output Q / PCL 1 output Q
r20160	BO: PDE 0 output Q / PDE 0 output Q
r20165	BO: PDE 1 output Q / PDE 1 output Q
r20170	BO: PDF 0 output Q / PDF 0 output Q
r20175	BO: PDF 1 output Q / PDF 1 output Q
r20180	BO: PST 0 output Q / PST 0 output Q
r20185	BO: PST 1 output Q / PST 1 output Q

r20190 BO: RSR 0 inverted output QN / RSR 0 inv outp QN
r20194 BO: RSR 1 output Q / RSR 1 output Q
r20195 BO: RSR 1 inverted output QN / RSR 1 inv outp QN
r20199
r20200
r20204
r20205
r20210
r20215
r20232
r20233
r20240
r20241
r20262
r20263
r20270
r20271
r20272
r20279
r20280
r20281
r20301
r20305
r20313
r20314
r20315
r20319
r20320
r20321
r20325
r20326
r20330
r20331
r20336
r20341
r20346
r20351
r20356
r20361
BO: RSR 0 output Q / RSR 0 output Q

BO: DFR 0 output Q / DFR 0 output Q
BO: DFR 0 inverted output QN / DFR 0 inv outp QN
BO: DFR 1 output Q / DFR 1 output Q
BO: DFR 1 inverted output QN / DFR 1 inv outp QN
BO: BSW 0 output Q / BSW 0 output Q
BO: BSW 1 output Q / BSW 1 output Q
BO: LIM 0 input quantity at the upper limit QU / LIM 0 QU
BO: LIM 0 input quantity at the lower limit QL / LIM 0 QL
BO: LIM 1 input quantity at the upper limit QU / LIM 1 QU
BO: LIM 1 input quantity at the lower limit QL / LIM 1 QL
BO: INT 0 integrator at the upper limit QU / INT 0 QU
BO: INT 0 integrator at the lower limit QL / INT 0 QL
BO: LVM 0 input quantity above interval QU / LVM $0 \times$ above QU
BO: LVM 0 input quantity within interval QM / LVM $0 \times$ within QM
BO: LVM 0 input quantity below interval QL / LVM $0 \times$ below QL
BO: LVM 1 input quantity above interval QU / LVM $1 X$ above QU
BO: LVM 1 input quantity within interval QM / LVM $1 \times$ within QM
BO: LVM 1 input quantity below interval QL / LVM $1 \times$ below QL
BO: NOT 4 inverted output / NOT 4 inv output
BO: NOT 5 inverted output / NOT 5 inv output
BO: NCM 0 output QU / NCM 0 output QU
BO: NCM 0 output QE / NCM 0 output QE
BO: NCM 0 output QL / NCM 0 output QL
BO: NCM 1 output QU / NCM 1 output QU
BO: NCM 1 output QE / NCM 1 output QE
BO: NCM 1 output QL / NCM 1 output QL
BO: RSR 2 output Q / RSR 2 output Q
BO: RSR 2 inverted output QN / RSR 2 inv outp Q
BO: DFR 2 output Q / DFR 2 output Q
BO: DFR 2 inverted output QN / DFR 2 inv outp QN
BO: PDE 2 output Q / PDE 2 output Q
BO: PDE 3 output Q / PDE 3 output Q
BO: PDF 2 output Q / PDF 2 output Q
BO: PDF 3 output Q / PDF 3 output Q
BO: MFP 2 output Q / MFP 2 output Q
BO: MFP 3 output Q / MFP 3 output Q

1.4.4 Connector Output Parameters

Product: SINAMICS G120 CU240, Version: 4402100, Language: eng, Type: CO
r0021 CO: Actual speed smoothed / n_act smooth
r0025 CO: Output voltage smoothed / U_outp smooth
r0026 CO: DC link voltage smoothed / Vdc smooth
r0027 CO: Absolute actual current smoothed / I_act abs val smth
r0032 CO: Active power actual value smoothed / P_actv_act smth
r0034 CO: Motor utilization / Motor utilization
r0035 CO: Motor temperature / Mot temp
r0036 CO: Power unit overload I2t / PU overload I2t
r0037[0...19] CO: Power unit temperatures / PU temperatures
r0060
r0062 CO: Speed setpoint after the filter / n_set after filter
r0063[0...2] CO: Speed actual value / n_act
r0064
CO: Speed controller system deviation / n_ctrl system dev
r0066 CO: Output frequency / f_outp
r0067 CO: Output current, maximum / I_outp max
r0068[0...1] CO: Absolute current actual value / I_act abs val
r0069[0...6] CO: Phase current actual value / I_phase act value
r0070 CO: Actual DC link voltage / Vdc act val
r0072 CO: Output voltage / U_output
r0074 CO: Modulat_depth / Modulat_depth
r0075 CO: Current setpoint field-generating / Id_set
r0076 CO: Current actual value field-generating / Id_act
r0077 CO: Current setpoint torque-generating / Iq_set
r0078 CO: Current actual value torque-generating / Iq_act
r0079 CO: Torque setpoint / M_set total
r0080[0...1] CO: Torque actual value / M_act
r0081
r0082[0...2] CO: Active power actual value / P_act
r0083
CO: Flux setpoint / Flex setp
r0084[0...1] CO: Flux actual value / Flux act val
r0087 CO: Actual power factor / Cos phi act
r0094 CO: Transformation angle / Transformat_angle
r0289 CO: Maximum power unit output current / PU I_outp max
r0586 CO: Measuring probe, speed actual value / MT n_act
r0587 CO: Measuring probe, measuring time measured / MT t_meas measured
r0588 CO: Measuring probe, pulse counter / MT pulse counter
r0752[0...1] CO: CU analog inputs input voltage/current actual / CU AI U/I_inp act
r0755[0...1] CO: CU analog inputs actual value in percent / CU AI value in \%
r0944
p1001[0...n]
CO: Counter for fault buffer changes / Fault buff change
p1001[0..n]
p1003[0.n] CO: Fixed ped setpoint 3/n_-
p1003[0...n] CO: Fixed speed setpoint $3 / n _$set_fixed 3
p1004[0...n] CO: Fixed speed setpoint 4 / n_set_fixed 4
p1005[0...n] CO: Fixed speed setpoint $5 / n _$set_fixed 5
p1006[0...n] CO: Fixed speed setpoint $6 / n _$set_fixed 6
p1007[0...n] CO: Fixed speed setpoint $7 / n _$set_fixed 7
p1008[0...n] CO: Fixed speed setpoint $8 / n _$set_fixed 8
p1009[0...n] CO: Fixed speed setpoint $9 / n _$set_fixed 9
p1010[0...n] CO: Fixed speed setpoint $10 / n _$set_fixed 10
p1011[0...n] CO: Fixed speed setpoint 11 / n_set_fixed 11
p1012[0...n] CO: Fixed speed setpoint $12 /$ n_set_fixed 12
p1013[0...n] CO: Fixed speed setpoint $13 / n _$set_fixed 13
p1014[0...n] CO: Fixed speed setpoint $14 / n _$set_fixed 14
p1015[0...n] CO: Fixed speed setpoint 15 / n_set_fixed 15
r1024 CO: Fixed speed setpoint effective / n_set_fixed eff
r1045 CO: Mot. potentiometer speed setp. in front of ramp-fct. gen. / Mop n_set bef RFG
r1050 CO: Motor. potentiometer setpoint after the ramp-function generator / Mop setp after RFG
r1073 CO: Main setpoint effective / Main setpoint eff

r1077	CO: Supplementary setpoint effective / Suppl setpoint eff
r1078	CO: Total setpoint effective / Total setpoint eff
p1083[0...n]	CO: Speed limit in positive direction of rotation / n_limit pos
r1084	CO: Speed limit positive effective / n_limit pos eff
p1086[0...n]	CO: Speed limit in negative direction of rotation / n _limit neg
r1087	CO: Speed limit negative effective / n_limit neg eff
r 1112	CO: Speed setpoint after minimum limiting / n_set n. min_lim
r 1114	CO: Setpoint after the direction limiting / Setp after limit
r1119	CO: Ramp-function generator setpoint at the input / RFG setp at inp
r1149	CO: Ramp-function generator, acceleration / RFG acceleration
r1150	CO: Ramp-function generator speed setpoint at the output / RFG n_set at outp
r1169	CO: Speed controller, speed setpoints 1 and $2 / n _c t r l ~ n _s e t ~ 1 / 2 ~$
r1170	CO: Speed controller, setpoint sum / n_ctrl setp sum
r1258	CO: Vdc controller output / Vdc_ctrl output
r1298	CO: Vdc controller output (U/f) / Vdc_ctrl output
r1337	CO: Actual slip compensation / Slip comp act val
r1343	CO: I_max controller frequency output / I_max_ctrl f_outp
r1348	CO: U/f control Eco factor actual value / U/f Eco fac act v
p1351[0...n]	CO: Motor holding brake starting frequency / Brake f_start
r1438	CO: Speed controller, speed setpoint / n_ctrl n_set
r1445	CO: Actual speed smoothed / n_act smooth
r1454	CO: Speed controller system deviation I component / n_ctrl sys dev Tn
r1468	CO: Speed controller P-gain effective / n_ctr Kp eff
r1482	CO: Speed controller I torque output / n_ctrl I-M_output
r1490	CO: Droop feedback speed reduction / Droop n_reduction
r1493	CO: Moment of inertia, total / M_inertia total
r1508	CO: Torque setpoint before supplementary torque / M_set bef. M_suppl
r1516	CO: Supplementary torque and acceleration torque / M_suppl + M_accel
r1518[0...1]	CO: Accelerating torque / M_accel
p1520[0...n]	CO: Torque limit upper / M_max upper
p1521[0...n]	CO: Torque limit lower / M_max lower
p1524[0...n]	CO: Torque limit upper/motoring scaling / M_max up/mot scal
p1525[0...n]	CO: Torque limit lower scaling / M_max lower scal
r1526	CO: Torque limit upper without offset / M_max up w/o offs
r1527	CO: Torque limit lower without offset / M_max low w/o offs
r1538	CO: Upper effective torque limit / M_max upper eff
r1539	CO: Lower effective torque limit / M_max lower eff
r1547[0...1]	CO: Torque limit for speed controller output / M_max outp n_ctrl
r1548[0...1]	CO: Stall current limit torque-generating maximum / Isq_max stall
p1570[0...n]	CO: Flux setpoint / Flux setpoint
r1593[0...1]	CO: Field weakening controller / flux controller output / Field/Fl_ctrl outp
r1597	CO: Field weakening controller output / Field_ctrl outp
r1598	CO: Total flux setpoint / Flux setp total
r1718	CO: Isq controller output / Isq_ctrl outp
r1723	CO: Isd controller output / Isd_ctrl outp
r1732[0...1]	CO: Direct-axis voltage setpoint / Direct U set
r1733[0...1]	CO: Quadrature-axis voltage setpoint / Quad U set
r1770	CO: Motor model speed adaptation proportional component / MotMod n_adapt Kp
r1771	CO: Motor model speed adaptation I comp. / MotMod n_adapt Tn
r1801[0...1]	CO: Pulse frequency / Pulse frequency
r1809	CO: Modulator mode actual / Modulator mode act
r2050[0...7]	CO: PROFIBUS PZD receive word / PZD recv word
r2089[0...4]	CO: Send binector-connector converter status word / Bin/con ZSW send

r2120 CO: Sum of fault and alarm buffer changes / Sum buffer changed
r2121 CO: Counter, alarm buffer changes / Alrm buff changed
r2131 CO: Actual fault code / Actual fault code
r2132 CO: Actual alarm code / Actual alarm code
r2169
p2201[0...n]
CO: Actual speed smoothed signals / n_act smth message
p2202[0...n]
. Technology controller, fixed value 1 / Tec_ctr fix val 1
p2203[0...
CO: Technology controller, fixed value 2 / Tec_ctr fix val 2
p2205[0...n] CO: Technology controller, fixed value 5 / Tec_ctr fix val 5
p2206[0...n] CO: Technology controller, fixed value 6 / Tec_ctr fix val 6
p2207[0...n] CO: Technology controller, fixed value 7 / Tec_ctr fix val 7
p2208[0...n] CO: Technology controller, fixed value 8 / Tec_ctr fix val 8
p2209[0...n] CO: Technology controller, fixed value $9 /$ Tec_ctr fix val 9
p2210[0...n] CO: Technology controller, fixed value 10 / Tec_ctr fix val 10
p2211[0...n] CO: Technology controller, fixed value 11 / Tec_ctr fix val 11
p2212[0...n] CO: Technology controller, fixed value 12 / Tec_ctr fix val 12
p2213[0...n] CO: Technology controller, fixed value 13 / Tec_ctr fix val 13
p2214[0...n] CO: Technology controller, fixed value 14 / Tec_ctr fix val 14
p2215[0...n] CO: Technology controller, fixed value 15 / Tec_ctr fix val 15
r2224
r2245
r2262
r2266
r2272
r2273
p2291
p2292
r2294
p2295
r2344
p2900[0...n]
CO: Technology controller last speed setpoint (smoothed) / Tec_ctrl n_setp_sm
Co: Fixed value 1 [\%] / Fixed value 1 [\%]
p2901[0...n] CO: Fixed value 2 [\%] / Fixed value 2 [\%]
r2902[0...14] CO: Fixed values [\%] / Fixed values [\%]
p2930[0...n] CO: Fixed value M [Nm] / Fixed value M [Nm]
r3131
r3132
r9733[0...2]
r20095
r20099
r20103 CO: SUB 0 difference Y / SUB 0 difference Y
r20107 CO: SUB 1 difference Y / SUB 1 difference Y
r20111 CO: MUL 0 product $\mathrm{Y} / \mathrm{MUL} 0$ product Y
r20115 CO: MUL 1 product Y / MUL 1 product Y
r20119[0...2] CO: DIV 0 quotient / DIV 0 quotient
r20124[0...2] CO: DIV 1 quotient / DIV 1 quotient
r20129 CO: AVA 0 output Y / AVA 0 output Y
r20134 CO: AVA 1 output Y I AVA 1 output Y
r20220 CO: NSW 0 output Y I NSW 0 output Y
r20225 CO: NSW 1 output Y / NSW 1 output Y
r20231 CO: LIM 0 output $\mathrm{Y} / \mathrm{LIM} 0$ output Y

CO: LIM 1 output Y / LIM 1 output Y
r20247 CO: PT1 0 output Y / PT1 0 output Y
r20253 CO: PT1 1 output Y / PT1 1 output Y
r20261 CO: INT 0 output Y / INT 0 output Y
r20286 CO: DIF 0 output Y / DIF 0 output Y
r20309 CO: ADD 2 output Y / ADD 2 output Y
r20373 CO: PLI 0 output Y / PLI 0 output Y
r20379

1.4.5 Connector/Binector Output Parameters

Product: SINAMICS G120 CU240, Version: 4402100, Language: eng, Type: CO/BO r0046.0... 31 CO/BO: Missing enable sig / Missing enable sig
r0050.0... 1 CO/BO: Command Data Set CDS effective / CDS effective
r0051.0... 1 CO/BO: Drive Data Set DDS effective / DDS effective
r0052.0... 15 CO/BO: Status word 1 / ZSW 1
r0053.0... 11 CO/BO: Status word 2 / ZSW 2
r0054.0... 15 CO/BO: Control word 1 / STW 1
r0055.0... 15 CO/BO: Supplementary control word / Suppl STW
r0056.0... 15 CO/BO: Status word, closed-loop control / ZSW cl-loop ctrl
r0056.0... 13 CO/BO: Status word, closed-loop control / ZSW cl-loop ctrl
r0722.0... 11 CO/BO: CU digital inputs, status / CU DI status
r0722.0... 12 CO/BO: CU digital inputs, status / CU DI status
r0723.0... 11 CO/BO: CU digital inputs, status inverted / CU DI status inv
r0723.0... 12 CO/BO: CU digital inputs, status inverted / CU DI status inv
r0835.2... 8 CO/BO: Data set changeover status word / DDS_ZSW
r0836.0... 1 CO/BO: Command Data Set CDS selected / CDS selected
r0837.0...1 CO/BO: Drive Data Set DDS selected / DDS selected
r0898.0... 14 CO/BO: Control word sequence control / STW seq_ctrl
r0899.0... 13 CO/BO: Status word sequence control / ZSW seq_ctrl
r1198.0... 15 CO/BO: Control word setpoint channel / STW setpoint chan
r1199.0...6 CO/BO: Ramp-function generator status word / RFG ZSW
r1204.0... 13 CO/BO: Flying restart, U/f control status / FlyRest Uf st
r1205.0... 15 CO/BO: Flying restart, vector control status / FlyRest vector st
r1214.0... 15 CO/BO: Automatic restart, status / AR status
r1239.8... 13 CO/BO: DC braking status word / DCBRK ZSW
r1406.4... 15 CO/BO: Control word speed controller / STW n_ctrl
r1407.0...15 CO/BO: Status word speed controller / ZSW n_ctrl
r1408.0... 14 CO/BO: Status word current controller / ZSW I_ctrl
r2129.0... 15 CO/BO: Trigger word for faults and alarms / Trigger word
r2135.12... 15 CO/BO: Status word faults/alarms 2 / ZSW fault/alarm 2
r2138.7... 15 CO/BO: Control word faults/alarms / STW fault/alarm
r2139.0... 12 CO/BO: Status word faults/alarms 1 / ZSW fault/alarm 1
r2197.0... 13 CO/BO: Status word monitoring 1 / ZSW monitor 1
r2198.0... 13 CO/BO: Status word monitoring 2 / ZSW monitor 2
r2199.0... 11 CO/BO: Status word monitoring 3 / ZSW monitor 3
r2225.0 CO/BO: Technology controller fixed value selection status word / Tec_ctr FixVal ZSW
r2349.0... 12 CO/BO: Technology controller status word / Tec_ctrl status
r3113.0... 15 CO/BO: NAMUR message bit bar / NAMUR bit bar
r3333.0... 3 CO/BO: 2-3-WIRE Output / 2-3-WIRE OUT
r3859.0 CO/BO: Compound braking status word / Compound Br ZSW
r9720.0... 13 CO/BO: SI Motion control signals integrated in the drive / SI Mtn integ STW
r9722.0... 15 CO/BO: SI Motion status signals integrated in the drive / SI Mtn integ stat
r9722.0... 13 CO/BO: SI Motion status signals integrated in the drive / SI Mtn integ stat
r9723.0... 16 CO/BO: SI Motion diagnostic signals integrated in the drive / SI Mtn integ diag
r9734.0... 14 CO/BO: SI Motion Safety Info Channel status word / SI Mtn info ch ZSW
r9742.0... 15 CO/BO: SI Motion drive-integrated status signals (processor 2) / SI Mtn int stat P2
r9772.0... 20 CO/BO: SI status (processor 1) / SI status P1
r9773.0... 31 CO/BO: SI status (processor 1 + processor 2) / SI status P1+P2
r9872.0... 20 CO/BO: SI status (processor 2) / SI Status P2
r10051.0... 2 CO/BO: SI digital inputs status (processor 1) / SI DI status P1
r10151.0...2 CO/BO: SI digital inputs status (processor 2) / SI DI status P2

$1.5 \quad$ Quick commissioning (p0010 = 1)

The following parameters are necessary for quick commissioning (p0010 = 1).
Table 1-7 Quick commissioning (p0010 = 1)

Par.-No.	Name	Access level	Can be changed
p0010	Drive commissioning parameter filter	1	C(1)T
p0015	Macro drive unit	1	C, C(1)
p0100	IEC/NEMA mot stds	1	C(1)
p0205	Power unit application	1	C(1,2)
p0230	Drive filter type, motor side	1	C(1,2)
p0300	Motor type selection	2	C(1,3)
p0301	Motor code number selection	2	C(1,3)
p0304	Rated motor voltage	1	C(1,3)
p0305	Rated motor current	1	C(1,3)
p0307	Rated motor power	2	C(1,3)
p0308	Rated motor power factor	1	C(1,3)
p0309	Rated motor efficiency	1	C(1,3)
p0310	Rated motor frequency	1	C(1,3)
p0311	Rated motor speed	1	C(1,3)
p0314	Motor pole pair number	1	C(1,3)
p0316	Motor torque constant	3	C(1,3)
p0322	Maximum motor speed	3	C(1,3) UT
p0323	Maximum motor current	1	C(1,3)
p0335	Motor cooling type	1	C(1,3)
p0500	Technology application	$\begin{array}{\|l\|l} \hline \text { PM230: } 4 \\ \text { PM240: } 2 \end{array}$	$\mathrm{C}(1,3) \mathrm{T}$
p0640	Current limit	2	$\mathrm{C}(1,5) \mathrm{T}$
p0700	Command source selection	1	$\mathrm{C}(1,3) \mathrm{UT}$
p0922	PROFIdrive telegram selection	1	C(1)T
p0970	Reset drive parameters	1	C $(1,30)$
p1000	Selecting the speed setpoint	1	$\mathrm{C}(1) \mathrm{T}$

Table 1-7 Quick commissioning (p0010 = 1), continued

Par.-No.	Name	Access level	Can be changed
p1080	Minimum speed	1	$\mathrm{C}(1) \mathrm{T}$
p1082	Maximum speed	1	$\mathrm{C}(1) \mathrm{T}$
p1120	Ramp-function generator ramp-up time	1	$\mathrm{C}(1) \mathrm{UT}$
p1121	Ramp-function generator ramp-down time	1	$\mathrm{C}(1) \mathrm{UT}$
p1135	OFF3 ramp-down time	2	$\mathrm{C}(1) \mathrm{UT}$
p1300	Open-loop/closed-loop control operating mode	2	$\mathrm{C}(1) \mathrm{T}$
p1500	Selecting the torque setpoint	2	$\mathrm{C}(1) \mathrm{T}$
p1900	Motor data identification and rotating measurement	2	$\mathrm{C}(1) \mathrm{T}$
p2196	Torque utilization scaling	1	$\mathrm{C}(1,3) \mathrm{UT}$
p3900	Completion of quick commissioning	1	$\mathrm{C}(1)$

When p0010 = 1 is chosen, p0003 (user access level) can be used to select the parameters to be accessed.

At the end of the quick commissioning sequence, set p3900 $=1$ to carry out the necessary motor calculations and clear all other parameters (not included in p0010 = 1) to their default settings.

Note

This applies only in Quick Commissioning mode.

Function diagrams

Contents

2.1	Contents: function diagrams	$2-488$
2.2	Explanations for the function diagrams	$2-493$
2.3	Overview	$2-498$
2.4	Input/Output Terminals	$2-506$
2.5	Communication	$2-517$
2.6	Internal control/status words	$2-539$
2.7	Braking Control	$2-557$
2.8	Safety Integrated	$2-559$
2.9	Setpoint channel	$2-572$
2.10	V/f control	$2-582$
2.11	Vector control	$2-586$
2.12	Free Function Blocks	$2-606$
2.13	Technology functions	$2-627$
2.14	Technology controller	$2-629$
2.15	Signals and monitoring functions	$2-634$
2.16	Faults and warnings	$2-644$
2.17	Data sets	$2-649$

2.1 Contents: function diagrams

2.2 Explanations for the function diagrams 2-493
1020 - Explanation of the symbols (Part 1) 2-494
1021 - Explanation of the symbols (Part 2) 2-495
1022 - Explanation of the symbols (Part 3) 2-496
1030 - Handling BICO technology 2-497
2.3 Overview 2-498
1520 - PROFIdrive/PROFIBUS 2-499
1530 - Internal control/status words, data sets 2-500
1550 - Setpoint channel 2-501
1690 - Vector control, V/f control 2-502
1700 - Vector control, speed control and generation of the torque limits 2-503
1710 - Vector control, current control 2-504
1750 - Monitoring functions, faults, alarms 2-505
2.4 Input/Output Terminals 2-506
2221 - CU240B-2: Digital inputs, electrically isolated (DIO ... DI3) 2-507
2220 - CU240E-2: Digital inputs, electrically isolated (DIO ... DI5) 2-508
2223 - CU240B-2: Analog inputs as Digital inputs (DI11) 2-509
2222 - CU240E-2: Analog inputs as Digital inputs (DI11 ... DI12) 2-510
2231 - CU240B-2: Digital output (DO0) 2-511
2230 - CU240E-2: Digital outputs (DOO ... DO2) 2-512
9567 - CU240B-2: Analog input 0 (AIO) 2-513
9566 - CU240E-2: Analog inputs 0 ... 1 (AIO ... AI1) 2-514
9573 - CU240B-2: Analog output 0 (AO0) 2-515
9572 - CU240E-2: Analog outputs 0 ... 1 (AO0 ... AO1) 2-516
2.5 Communication 2-517
2.5.1 Fieldbus Interface (USS, Modbus) (CU240B/E-2) 2-518
9310 - Configuration, addresses and diagnostics 2-519
9342 - STW1 control word interconnection 2-520
9352 - ZSW1 status word interconnection 2-521
9360 - Receive telegram, free interconnection via BICO 2-522
9370 - Send telegram, free interconnection via BICO 2-523
9372 - Status words, free interconnection 2-524
2.5.2 PROFIdrive / PROFIBUS (CU240B/E-2 DP) 2-525
2410 - PROFIBUS, addresses and diagnostics 2-526
2420 - Telegrams and Process Data (PZD) 2-527
2440 - PZD receive signals interconnection 2-528
2441 - STW1 control word interconnection 2-529
2442 - STW1 control word interconnection (p2038 = 0) 2-530
2444 - STW3 control word interconnection (p2038 = 0) 2-531
2450 - PZD send652 signals interconnection 2-532
2451 - ZSW1 status word interconnection (p2038 = 2) 2-533
2452 - ZSW1 status word interconnection (p2038 = 0) 2-534
2454 - ZSW3 status word interconnection (p2038 = 0) 2-535
2468 - Receive telegram, free interconnection via BICO (p0922 = 999) 2-536
2470 - Send telegram, free interconnection via BICO (p0922 = 999) 2-537
2472 - Status words, free interconnection 2-538
2.6 Internal control/status words 2-539
2501 - Control word, sequence control 2-540
2503 - Status word, sequence control 2-541
2505 - Control word, setpoint channel 2-542
2510 - Status word 1 (r0052) 2-543
2511 - Status word 2 (r0053) 2-544
2512 - Control word 1 (r0054) 2-545
2513 - Control word 2 (r0055) 2-546
2520 - Control word, speed controller 2-547
2522 - Status word, speed controller 2-548
2526 - Status word, closed-loop control 2-549
2530 - Status word, current control 2-550
2534 - Status word, monitoring functions 1 2-551
2536 - Status word, monitoring functions 2 2-552
2537 - Status word, monitoring functions 3 2-553
2546 - Control word, faults/alarms 2-554
2548 - Status word, faults/alarms 1 and 2 2-555
2634 - Sequence control - Missing enable signals 2-556
2.7 Braking Control 2-557
2701 - Basic braking control 2-558
2.8 Safety Integrated 2-559
2800 - Basic Functions, Parameter Manager 2-560
2802 - Basic Functions, Monitoring functions and faults/alarms 2-561
2804 - Basic Functions, Status words 2-562
2810 - Basic Functions, STO: Safe Torque Off 2-563
2812 - Basic Functions, F-DI: Fail-safe Digital Input 2-564
2820 - SI Motion, SLS: Safely-Limited Speed 2-565
2825 - SI Motion, SS1: Safe Stop 1, Internal STOP A, B, F 2-566
2834 - SI Motion, Status words 2-567
2840 - SI Motion, PROFIsafe Control word and Status word 2-568
2846 - SI Motion, Parameter Manager 2-569
2850 - SI Motion, Fail-safe Digital Inputs (F-DIO ... F-DI2) 2-570
2855 - SI Motion, Safe State selection 2-571
2.9 Setpoint channel 2-572
3010 - Fixed speed setpoints, binary selection (p1016 = 2) 2-573
3011 - Fixed speed setpoints, direct selection (p1016 = 1) 2-574
3020 - Motorized potentiometer 2-575
3030 - Main/supplementary setpoint, setpoint scaling, jogging 2-576
3040 - Direction limitation and direction reversal 2-577
3050 - Skip frequency bands and frequency limitations 2-578
3060 - Basic ramp-function generator 2-579
3070 - Extended ramp-function generator 2-580
3080 - Ramp-function generator selection, status word, tracking 2-581
2.10 V/f control 2-582
6300 - V/f characteristic and voltage boost 2-583
6310 - Resonance damping and slip compensation 2-584
6320 - Vdc_max controller and Vdc_min controller (PM230 / PM240) 2-585
2.11 Vector control 2-586
6030 - Speed setpoint, droop 2-587
6031 - Pre-control balancing, acceleration model 2-588
6040 - Speed controller 2-589
6050 - Kp_n/Tn_n adaption 2-590
6060 - Torque setpoint 2-591
6220 - Vdc_max controller and Vdc_min controller (Vector control, PM230 / PM240) 2-592
6490 - Speed control configuration 2-593
6491 - Flux control configuration 2-594
6630 - Upper/lower torque limit 2-595
6640 - Current/power/torque limits 2-596
6710 - Current setpoint filter 2-597
6714 - Iq and Id controllers 2-598
6721 - Id setpoint (PEM, p0300 = 2xx) 2-599
6722 - Field weakening characteristic, Id setpoint (ASM, p0300 = 1) 2-600
6723 - Field weakening controller, flux controller (ASM, p0300 = 1) 2-601
6724 - Field weakening controller (PEM, p0300 = 2xx) 2-602
6730 - Interface to the Power Module (ASM, p0300 = 1) 2-603
6731 - Interface to the Power Module (PEM, p0300 = 2xx) 2-604
6799 - Display signals 2-605
2.12 Free Function Blocks 2-606
7200 - Run-time groups / Sampling times 2-607
7210 - AND (AND function block with 4 inputs) 2-608
7212 - OR (OR function block with 4 inputs) 2-609
7214 - XOR (XOR function block with 4 inputs) 2-610
7216 - NOT (inverter) 2-611
7220 - ADD (adder with 4 inputs), SUB (subtracter) 2-612
7222 - MUL (multiplier), DIV (divider) 2-613
7224 - AVA (absolute value generators) 2-614
7225 - NCM (numerical comparator) 2-615
7226 - PLI (scaling polyline) 2-616
7230 - MFP (pulse generator), PCL (pulse shortener) 2-617
7232 - PDE (switch-in delay) 2-618
7233 - PDF (switch-out delay) 2-619
7234 - PST (pulse extender) 2-620
7240 - RSR (RS flipflop), DFR (D flipflop) 2-621
7250 - BSW (binary changeover switch), NSW (numerical changeover switch) 2-622
7260 - LIM (limiter) 2-623
7262 - PT1 (smoothing element) 2-624
7264 - INT (integrator), DIF (differentiating element) 2-625
7270 - LVM (limit value monitor) 2-626
2.13 Technology functions 2-627
7017 - DC brake (p0300 = 1) 2-628
2.14 Technology controller 2-629
7950 - Fixed values, binary selection (p2216 = 2) 2-630
7951 - Fixed values, direct selection (p2216 = 1) 2-631
7954 - Motorized potentiometer 2-632
7958 - Closed-loop control 2-633
2.15 Signals and monitoring functions 2-634
8010 - Speed signals 1 2-635
8011 - Speed signals 2 2-636
8012 - Torque signals, motor locked/stalled 2-637
8013 - Load monitoring) 2-638
8014 - Thermal monitoring, power module 2-639
8016 - Thermal monitoring, motor 2-640
8017 - Thermal I2t motor model (PEM, p0300 = 2xx) 2-641
8020 - Monitoring functions 1 2-642
8021 - Monitoring functions 2 2-643
2.16 Faults and warnings 2-644
8060 - Fault buffer 2-645
8065 - Warning buffer 2-646
8070 - Fault/warning trigger word (r2129) 2-647
8075 - Fault/warning configuration 2-648
2.17 Data sets 2-649
8560 - Command Data Sets (CDS) 2-650
8565 - Drive Data Sets (DDS) 2-651

2.2 Explanations for the function diagrams

Function diagrams

$1020-$ Explanation of the symbols (Part 1)	$2-494$
1021 - Explanation of the symbols (Part 2)	$2-495$
1022 - Explanation of the symbols (Part 3)	$2-496$
1030 - Handling BICO technology	$2-497$

Switch-on delay

Delay (switch-on and switch-off)

The digital signal x must have the value " 1 " without interruption during time T1 or must have the value " 0 " during time T2 before output y changes its signal state

2nd-order filter (bandstop/general filter)

Transfer function
$H(s)=\frac{1}{\left(\frac{s}{2 \pi f n _n}\right)^{2}+\frac{2 \cdot D_{-} n}{2 \pi f n} \cdot s+1}$

PT1 element

Delay element, first order.
pxxxx = time constant

PT2 low pass

4
3

Explanation of the symbols (Part 3)

Handling BICO technology

Connectors are "analog signals" that can be freely interconnected (e.g. percentage variables, speeds or torques) Connectors are also "CO:" display parameters ($\mathrm{CO}=\mathrm{Connector} \mathrm{Output)}$.

Parameterization:

At the signal destination, the required binector or connector is selected using appropriate parameters:
"BI:" parameter for binectors ($\mathrm{BI}=$ Binector Input)
"Cl:" parameter for connectors (CI = Connector Input)

Example:

The main setpoint for the speed controller (CI: p1070) should be received from the output of the motorized potentiometer (CO: r1050) and the "jog" command (BI: p1055) from digital input DIO (BO: r0722.0, Terminal 5 (KI.5)) on the CU.

Parameterizing steps:

(1) $\mathrm{p} 1055[0]=722.0$	Terminal $5(\mathrm{KI} .5)$ acts as "Jog bit 0 ".
(2) $\mathrm{p} 1070[0]=1050$	The output of the motorized potentiometer acts as main setpoint for the speed controller.

1	2	3	4	5	6	7	8
Explanations for the function diagrams					FP_1030_97_61.vsd	Function diagram	- 1030 -
Handling BICO technology					13.12.2010 V4.4	G120 CU240B/E-2	

2.3 Overview

Function diagrams

1520 - PROFIdrive/PROFIBUS	$2-499$
1530 - Internal control/status words, data sets	$2-500$
1550 - Setpoint channel	$2-501$
1690 - Vector control, V/f control	$2-502$
1700 - Vector control, speed control and generation of the torque limits	$2-503$
1710 - Vector control, current control	$2-504$
1750 - Monitoring functions, faults, alarms	$2-505$

[^0]

2.4 Input/Output Terminals

Function diagrams

2221 - CU240B-2: Digital inputs, electrically isolated (DIO ... DI3)	2-507
2220 - CU240E-2: Digital inputs, electrically isolated (DIO ... DI5)	2-508
2223 - CU240B-2: Analog inputs as Digital inputs (DI11)	2-509
2222 - CU240E-2: Analog inputs as Digital inputs (DI11 ... DI12)	2-510
2231 - CU240B-2: Digital output (DO0)	2-511
2230 - CU240E-2: Digital outputs (DO0 ... DO2)	2-512
9567 - CU240B-2: Analog input 0 (AIO)	2-513
9566 - CU240E-2: Analog inputs $0 \ldots 1$ (AIO ... AI1)	2-514
9573 - CU240B-2: Analog output 0 (AOO)	2-515
9572 - CU240E-2: Analog outputs 0 ... 1 (AO0 ... AO1)	2-516

 ふ su

2.5 Communication

2.5.1 Fieldbus Interface (USS, Modbus) (CU240B/E-2) 2-518
2.5.2 PROFIdrive / PROFIBUS (CU240B/E-2 DP) 2-525

2.5.1 Fieldbus Interface (USS, Modbus) (CU240B/E-2)

Function diagrams

9310 - Configuration, addresses and diagnostics 2-519
9342 - STW1 control word interconnection 2-520
9352 - ZSW1 status word interconnection 2-521
9360 - Receive telegram, free interconnection via BICO 2-522
9370 - Send telegram, free interconnection via BICO 2-523
9372 - Status words, free interconnection 2-524

Signal targets for fieldbus STW1（p0700＝6）					
Signal	Meaning	Interconnection parameters	［Function diagram］ internal control word	［Function diagram］ signal target	Inverted
STW1．0	$\boldsymbol{\Sigma}=$ ON（pulses can be enabled） $0=$ OFF1（braking with ramp－function generator，then pulse cancellation \＆ready for switching on）	p0840［0］$=$ r2090．0	［2501．3］	Sequence control	－
STW1．1	1 ＝No OFF2（enable is possible） $0=$ OFF2（immediate pulse suppression and switching on inhibited）	p0844［0］＝r2090．1	［2501．3］	Sequence control	－
STW1．2	```1 = No OFF3 (enable is possible) 0 = OFF3 (braking with the OFF3 ramp p1135, then pulse suppression and switching on inhibited)```	p0848［0］$=$ r2090．2	［2501．3］	Sequence control	－
STW1．3	$\begin{aligned} & 1=\text { Enable operation (pulses can be enabled) } \\ & 0=\text { Inhibit operation (cancel pulses) } \end{aligned}$	p0852［0］$=$ r2090．3	［2501．3］	Sequence control	－
STW1．4	1 ＝Operating condition（the ramp－function generator can be enabled） $0=$ Inhibit ramp－function generator（set the ramp－function generator output to zero）	p1140［0］＝r2090．4	［2501．3］	［3060］［3070］［3080］	－
STW1．5	1 ＝Enable the ramp－function generator $0=$ Stop the ramp－function generator（freeze the ramp－function generator output）	$\mathrm{p} 1141[0]=\mathrm{r} 2090.5$	［2501．3］	［3060］［3070］	－
STW1．6	$1=$ Enable setpoint $0=$ Inhibit setpoint（set the ramp－function generator input to zero）	p1142［0］$=$ r2090．6	［2501．3］	［3060］［3070］［3080］	－
STW1．7	$\boldsymbol{J}=$ Acknowledge faults	$\mathrm{p} 2103[0]=\mathrm{r} 2090.7$	［2546．1］	［8060］	－
STW1．8	Reserved	－	－	－	－
STW1．9	Reserved	－	－	－	－
STW1．10	1 ＝Control via PLC＜1＞	p0854［0］＝r2090．10	［2501．3］	［2501］	－
STW1．11	1 ＝Dir of rot reversal	p1113［0］$=$ r2090．11	［2505．3］	［3040］	－
STW1．12	Reserved	－	－	－	－
STW1．13	1 ＝Motorized potentiometer，setpoint，raise	p1035［0］＝r2090．13	［2505．3］	［3020］	－
STW1．14	1 ＝Motorized potentiometer，setpoint，lower	p1036［0］＝r2090．14	［2505．3］	［3020］	－
STW1．15	Reserved	－	－	－	－

＜1＞Bit 10 in STW1 must be set to ensure that the drive accepts the process data．

1	2	3	4	5	6	7	8
Fieldbus Interface（USS，Modbus on RS485）					FP＿9342＿97＿62．vsd	Function diagram	－9342－
STW1 control word interconnection					13．12．2010 V4．4	G120 CU240B／E－2	

$$
\text { <1> The send word } 1 \text { must be used as status word (ZSW1). The preconfiguration is set automatically via p0700 }=6 \text {. }
$$

<2> The preconfiguration with the speed setpoint is set automatically via p1000 $=6$.
<3> Physical word values are inserted in the telegram as referenced variables. p200x apply as reference variables (telegram contents $=4000$ hex, if the input variable has the value p200x).
The following applies for temperature values: $100^{\circ} \mathrm{C}->100 \%=4000$ hex; $0^{\circ} \mathrm{C} \rightarrow 0 \%$.

2.5.2 PROFIdrive I PROFIBUS (CU240B/E-2 DP)

Function diagrams

2410 - PROFIBUS, addresses and diagnostics	2-526
2420 - Telegrams and Process Data (PZD)	2-527
2440 - PZD receive signals interconnection	2-528
2441 - STW1 control word interconnection	2-529
2442 - STW1 control word interconnection (p2038 = 0)	2-530
2444 - STW3 control word interconnection (p2038 = 0)	2-531
2450 - PZD send652 signals interconnection	2-532
2451 - ZSW1 status word interconnection (p2038 = 2)	2-533
2452 - ZSW1 status word interconnection (p2038 = 0)	2-534
2454 - ZSW3 status word interconnection (p2038 = 0)	2-535
2468 - Receive telegram, free interconnection via BICO (p0922 = 999)	2-536
2470 - Send telegram, free interconnection via BICO (p0922 = 999)	2-537
2472 - Status words, free interconnection	2-538

$\begin{array}{r}\text { PD Telegr } \\ 1 . .999 \\ \hline\end{array}$

p0922 (1)														
	Standard telegrams				Manufacturer-specific telegrams								Free telegram	
Interconnection is made according to	[2440] [2450] automatically													
Telegram	1		20		350		352		353		354		999	
PZD1	STW1	zsw1	STW1 <4>	zsw1 <4>										
PZD2	NSOLL_A	NIST_A	NSOLL_A	NIST_A_GL										
PZD3				IAIST_GL	M_LIM	IAIST_GL	<3>	IAIST_GL			<3>	IAIST_GL		
PZD4				MIST_GL	STW3	zSW3	<3>	MIST_GL			<3>	MIST_GL		
PZD5				PIST_GL			<3>	WARN_CODE			<3>	WARN_CODE		
PZD6				<2>			<3>	FAULT_CODE			<3>	FAULT_CODE		
PZD7														
PZD8														

<1> If p0922 = 999 is changed to another value, the telegram is automatically assigned
If p0922 unequal 999 is changed to p0922 $=999$, the "old" telegram assignment is maintained
P Freely interconnectable (pre-setting: MELD_NAMUR)
$<3>$ Can be freely connected.
<4> In order to comply with the PROFIdrive profile, PZD1 must be used as control word 1 (STW1) or status word 1 (ZSW1)
p2037 = 2 should be set if STW1 is not transferred with PZD1 as specified in the PROFIdrive profile.

1 1-2	3	4	5	6	7	8
PROFIdrive / PROFIBUS				FP_2420_97_61.vsd	Function diagram	- 2420 -
Telegrams and Process Data (PZD)				13.12.2010 V4.4	G120 CU240B/E-2 DP	

<1> When selecting a standard telegram or a manufacturer-specific telegram via p0922, these interconnection
parameters of the command data set CDS are automatically set to 0 .
<2> Data type according to to the PROFIdrive profile: $116=$ Integer16, U16 = Unsigned16.
<3> Display parameters for receive data according to [2460].
<4> Only SIEMENS telegram 350

1	2	3	4	5	6		7	8
PROFIdrive / PROFIBUS					FP_2440_97	61.vsd	Function diagram	- 2440 -
PZD receive signals interconnection					13.12.2010	V4.4	G120 CU240B/E-2	

Signal targets for STW1 in Interface Mode SINAMICS (p2038 = 0)					<1>
Signal	Meaning	Interconnection parameters	[Function diagram] internal control word	[Function diagram] signal target	Inverted
STW1.0	$\boldsymbol{\Sigma}=$ ON (pulses can be enabled) $0=$ OFF1 (braking with ramp-function generator, then pulse cancellation \& ready for switching on)	p0840[0] $=$ r2090.0	[2501.3]	Sequence control	-
STW1.1	1 = No OFF2 (enable is possible) $0=$ OFF2 (immediate pulse suppression and switching on inhibited)	p0844[0] = r2090.1	[2501.3]	Sequence control	-
STW1.2	1 = No OFF3 (enable is possible) $0=$ OFF3 (braking with the OFF3 ramp p1135, then pulse suppression and switching on inhibited)	p0848[0] $=$ r2090.2	[2501.3]	Sequence control	-
STW1.3	1 = Enable operation (pulses can be enabled) $0=$ Inhibit operation (cancel pulses)	p0852[0] = r2090.3	[2501.3]	Sequence control	-
STW1.4	1 = Operating condition (the ramp-function generator can be enabled) $0=$ Inhibit ramp-function generator (set the ramp-function generator output to zero)	p1140[0] = r2090.4	[2501.3]	[3060] [3070] [3080]	-
STW1.5	1 = Enable the ramp-function generator $0=$ Stop the ramp-function generator (freeze the ramp-function generator output)	p1141[0] $=$ r2090.5	[2501.3]	[3060] [3070]	-
STW1.6	$\begin{aligned} & 1=\text { Enable setpoint } \\ & 0=\text { Inhibit setpoint (set the ramp-function generator input to zero) } \end{aligned}$	p1142[0] $=$ r2090.6	[2501.3]	[3060] [3070] [3080]	-
STW1.7	$\boldsymbol{J}=$ Acknowledge fauls	p2103[0] = r2090.7	[2546.1]	[8060]	-
STW1.8	Reserved	-	-	-	-
STW1.9	Reserved	-	-	-	-
STW1.10	1 = Control via PLC <2>	p0854[0] $=$ r2090.10	[2501.3]	[2501]	-
STW1.11	1 = Dir of rot reversal	$\mathrm{p} 1113[0]=\mathrm{r} 2090.11$	[2505.3]	[3040]	-
STW1.12	Reserved	-	-	-	-
STW1.13	1 = Motorized potentiometer, setpoint, raise	$\mathrm{p} 1035[0]=\mathrm{r} 2090.13$	[2505.3]	[3020]	-
STW1.14	1 = Motorized potentiometer, setpoint, lower	p1036[0] $=$ r2090.14	[2505.3]	[3020]	-
STW1.15	Reserved	-	-	-	-

<1> Used in telegrams 1, 350, 352, 353, 354
<2> Bit 10 in STW1 must be set to ensure that the drive accepts the process data

1	2	3	4	5	6	7	8
PROFIdrive / PROFIBUS					FP_2442_97_61.vsd	Function diagram	-2442-
STW1 control word interconnection (p2038 = 0)					13.12.2010 V4.4	G120 CU240B/E-2 DP	

Signal targets for STW3 in Interface Mode SINAMICS (p2038 = 0)					<1>
Signal	Meaning	Interconnection parameters	[Function diagram] internal control word	[Function diagram] signal target	Inverted
stw3.0	$1=$ Fixed setp bit 0	p1020[0] $=$ r2093.0	[3010.2]	[3010.2]	-
STW3. 1	$1=$ Fixed setp bit 1	p1021[0] $=$ r 2093.1	[2513.2]	[3010.2]	-
Stw3.2	$1=$ Fixed setp bit 2	p1022[0] $=$ r2093.2	[2513.2]	[3010.2]	-
STw3.3	$1=$ Fixed setp bit 3	p1023[0] $=$ r2093.3	[2513.2]	[3010.2]	-
STW3.4	$1=$ DDS select. bit 0	p0820 $=$ r2093.4	[2513.2]	[8565.2]	-
STW3.5	$1=$ DDS select. bit 1	$\mathrm{p} 0821=\mathrm{r} 2093.5$	[2513.2]	[8565.2]	-
STW3.6	Reserved	-	-	-	-
STW3. 7	Reserved	-	-	-	-
STW3. 8	1 = Technology controller enable	p2200[0] $=$ r 2093.8	[2513.2]	[7958.4]	-
Stw3. 9	1 = DC brake enable	p1230[0] = r2093.9	[2513.2]	[7017.1]	-
STW3. 10	Reserved	-	-	-	-
Stw3. 11	1 = Droop enable	p1492[0] $=$ r2093.11	[2513.2]	[6030.1]	-
Stw3. 12	1 = Torque control active	p1501[$[0]=r 2093.12$	[2513.2]	[6060.1]	
Stw3. 13	0 External fault 1 (F07860)	p2106[0] $=$ r2093.13	[2513.2]	[8060.1]	-
STW3. 14	Reserved	-	-	-	-
Stw3. 15	$1=\mathrm{CDS}$ bit 1	p0811[$[0]=r 2093.15$	[2513.2]	[8560.3]	-

<1> Used in telegrams 350

<1> Data type according to the PROFIdrive profile: $\mathrm{I} 16=\operatorname{Integer} 16, \mathrm{U} 16=$ Unsigned16.

1	2	3	4	5	6	7	8
PROFIdrive / PROFIBUS					FP_2450_97_61.vsd	Function diagram	- 2450 -
PZD send signals interconnection					13.12.2010 V4.4	G120 CU240B/E-2 DP	

Signal sources for ZSW1 in Interface Mode VIK-NAMUR (p2038 = 2)

Signal	Meaning	Interconnection parameters	[Function diagram] internal control word	[Function diagram] signal target	Inverted <2>
ZSW1.0	1 = Ready for switching on	p2080[0] $=$ r0899.0	[2503.7]	Sequence control	-
zSW1.1	1 = Ready for operation (DC link loaded, pulses inhibited)	p2080[1] $=$ r0899.1	[2503.7]	Sequence control	-
ZSW1.2	1 = Operation enabled (drive follows n _set)	p2080[2] = r0899.2	[2503.7]	Sequence control	-
ZSW1.3	1 = Fault present	p2080[3] = r2139.3	[2548.7]	[8060]	-
ZSW1.4	1 = No coast down active (OFF2 inactive)	p2080[4] $=$ r0899.4	[2503.7]	Sequence control	-
zSW1.5	1 = No fast stop active (OFF3 inactive)	p2080[5] $=$ r0899.5	[2503.7]	Sequence control	-
ZSW1.6	1 = Switching on inhibited active	p2080[6] $=$ r0899.6	[2503.7]	Sequence control	-
ZSW1.7	1 = Alarm present	p2080[7] $=$ r2139.7	[2548.7]	[8065]	-
ZSW1.8	1 = Speed setpoint - actual value deviation within tolerance t_off	p2080[8] $=$ r2197.7	[2534.7]	[8011]	-
ZSW1.9	$1=$ Control requested <3>	p2080[9] = r0899.9	[2503.7]	[2503]	-
ZSW1.10	$1=\mathrm{f}$ or n comparison value reached/exceeded	p2080[10] $=$ r2199.1	[2536.7]	[8010]	-
ZSW1.11	$1=1, M$, or P limit not reached	$\mathrm{p} 2080[11]=\mathrm{r0056.13}$	[2522.7]	[6060]	\checkmark
ZSW1.12	Reserved	-	-	-	-
ZSW1.13	1 = No motor overtemperature alarm	p2080[13] $=$ r2135.14	[2548.7]	[8016]	\checkmark
ZSW1.14	$\begin{aligned} & 1=\text { Motor rotates forwards }(n \text { act } \geq 0) \\ & 0=\text { Motor rotates backwards }\left(n_{2} \text { act }<0\right) \end{aligned}$	$\mathrm{p} 2080[14]=\mathrm{r} 2197.3$	[2534.7]	[8011]	-
ZSW1.15	1 = Display CDS	$\begin{gathered} \mathrm{p} 2080[15] \\ <4> \end{gathered}$	-	-	-
<1> Used in telegram 20. <2> The ZSW1 is generated using the binector-connector converter (BI: p2080[0...15], inversion: p2088[0].0...p2088[0].15)			<3> The drive object is ready to accept data. <4> Interconnection is not disabled.		

<1> Used in telegram 20.
<2> The ZSW1 is generated using the binector-connector converter (BI: p2080[0...15], inversion: p2088[0].0...p2088[0].15)
$<3>$ The drive object is ready to accept data
$<4>$ Interconnection is not disabled.
nerconnection is not disabled.

$n$$\sim$$\omega$$\omega$	Signal sources for ZSW3 im Interface Mode SINAMICS (p2038 = 0)					$\begin{gathered} <1> \\ \hline \text { Inverted } \end{gathered}$	
	Signal	Meaning	Interconnection parameters	[Function diagram] internal status word	[Function diagram] signal source		
	ZSW3.0	$\begin{aligned} & 1=\text { DC brake active } \\ & 0=\text { DC brake not active } \end{aligned}$	p2051[3] $=$ r0053	[2511.7]	[7017.5]	-	
N	ZSW3. 1	1 = \|n_act	> p1226 (n_standstill)		[2511.7]	[2534.7]	-
N	ZSW3. 2			[2511.7]	[2534.7]	-	
$\stackrel{\omega}{\omega}$	ZSW3.3	1 = I_act > p 2170		[2511.7]	[2534.7]	-	
ज	ZSW3.4	$1=\mid n _$act $\mid>$p2155		[2511.7]	[2534.7]	-	
을	ZSW3.5	1 = \|n_act $\mid<=$ p2155		[2511.7]	[2534.7]	-	
$\frac{\overrightarrow{\mathbb{D}}}{\stackrel{\rightharpoonup}{0}}$	ZSW3.6	1 = \|n_act	>= r1119 (f_set)		[2511.7]	[2534.7]	-
©	ZSW3.7	$1=\mathrm{Vdc} \ll \mathrm{p} 2172$		[2511.7]	[2534.7]	-	
2	ZSW3.8	$1=\mathrm{Vdc}>\mathrm{p} 2172$		[2511.7]	[2534.7]	-	
$\underset{\infty}{\infty}$	ZSW3.9	1 = Ramping finished		[2511.7]	[3080.7]	-	
응	ZSW3. 10	1 = Techn. contr. out at lower limit		[2511.7]	[7958.7]	-	
	ZSW3. 11	$1=$ Techn. contr. out at upper limit		[2511.7]	[7958.7]	-	
	ZSW3. 12	Reserved		-	-	-	
	ZSW3. 13	Reserved		-	-	-	
	ZSW3. 14	Reserved		-	-	-	
	ZSW3.15	Reserved		-	-	-	

<1> Used in telegrams 350.
<1> In order to maintain the PROFIdrive profile, receive word 1 must be used as control word (STW1)
(ue to bit
<2> Using the connector-binector converters, the bits can be extracted from two of the PZD receive words 3 to 8 and used as binectors.
<3> The following representation applies for words: 4000 hex $=100 \%$.
The reference variables p200x apply for the ongoing interconnection ($100 \% \rightarrow$ p200x).
The reference variables p200x apply for the ongoing interconnection (100 \% -> p200x).
The following applies for temperature values: $100^{\circ} \mathrm{C} \rightarrow 100 \%=4000$ hex, $0^{\circ} \mathrm{C} \rightarrow 0 \%$.

1	2	3	4	5	6	7	8
PROFIdrive / PROFIBUS					FP_2468_97_51.vsd	Function diagram	- 2468 -
Receive telegram, free interconnection via BICO (p0922 = 999)					13.12.2010 V4.4	G120 CU240B/E-2 DP	

<1> To comply with the PROFIdrive profile, send word 1 must be used as status word 1 (ZSW1).
<2> Physical word values are inserted in the telegram as referenced variables. p200x apply as reference variables (telegram contents $=4000$ hex, if the input variable has the value p200x).
The following applies for temperature values: $100^{\circ} \mathrm{C}$-> $100 \%=4000$ hex; $0^{\circ} \mathrm{C}$-> 0%.

2.6 Internal control/status words

Function diagrams

2501 - Control word, sequence control	2-540
2503 - Status word, sequence control	2-541
2505 - Control word, setpoint channel	2-542
2510 - Status word 1 (r0052)	2-543
2511 - Status word 2 (r0053)	2-544
2512 - Control word 1 (r0054)	2-545
2513 - Control word 2 (r0055)	2-546
2520 - Control word, speed controller	2-547
2522 - Status word, speed controller	2-548
2526 - Status word, closed-loop control	2-549
2530 - Status word, current control	2-550
2534 - Status word, monitoring functions 1	2-551
2536 - Status word, monitoring functions 2	2-552
2537 - Status word, monitoring functions 3	2-553
2546 - Control word, faults/alarms	2-554
2548 - Status word, faults/alarms 1 and 2	2-555
2634 - Sequence control - Missing enable signals	2-556

<1> r0052.3 displays status bit r2139.3 or r1214.10, if p1210>0

1	2	3	4	5	6	7	8
Internal control/status words					FP_2510_97_53.vsd	Function diagram	2510 -
Status word 1					13.12.2010 V4.4	G120 CU240B/E-2	

2.7 Braking Control

Function diagrams

2.8 Safety Integrated

Function diagrams

2800 - Basic Functions, Parameter Manager	$2-560$
2802 - Basic Functions, Monitoring functions and faults/alarms	$2-561$
2804 - Basic Functions, Status words	$2-562$
2810 - Basic Functions, STO: Safe Torque Off	$2-563$
2812 - Basic Functions, F-DI: Fail-safe Digital Input	$2-564$
$2820-$ SI Motion, SLS: Safely-Limited Speed	$2-565$
$2825-$ SI Motion, SS1: Safe Stop 1, Internal STOP A, B, F	$2-566$
$2834-$ SI Motion, Status words	$2-567$
$2840-$ SI Motion, PROFIsafe Control word and Status word	$2-568$
$2846-$ SI Motion, Parameter Manager	$2-569$
$2850-$ SI Motion, Fail-safe Digital Inputs (F-DIO ... F-DI2)	$2-570$
$2855-$ SI Motion, Safe State selection	$2-571$

$\frac{\text { рәделбәции кдәлея }}{\text { sweıбе!р ио!џэип」 }}$

SS1: Safe Stop 1

1	2	3	4	5	6		7	8
Safety Integrated					FP_2825_97	53.vsd	Function diagram	- 2825 -
SI Motion, SS1: Safe Stop 1, Internal STOP A, B, F					13.12.2010	V4.4	G120 CU240E-2	

2.9 Setpoint channel

Function diagrams

3010 - Fixed speed setpoints, binary selection $($ p1016 $=2)$	$2-573$
3011 - Fixed speed setpoints, direct selection $($ p1016 $=1)$	$2-574$
3020 - Motorized potentiometer	$2-575$
3030 - Main/supplementary setpoint, setpoint scaling, jogging	$2-576$
3040 - Direction limitation and direction reversal	$2-577$
3050 - Skip frequency bands and frequency limitations	$2-578$
3060 - Basic ramp-function generator	$2-579$
3070 - Extended ramp-function generator	$2-580$
3080 - Ramp-function generator selection, status word, tracking	$2-581$

PcCtrl active
 r0807.0

Setpoint from external OP or operating tool

<1> Jogging can only be activated in the operating state "Ready for operation (S2)".
<2> If technology controller is activated (p2200>0, p2251=0) connected with r2349.4.
<3> If technology controller is activated ($\mathrm{p} 2200>0, \mathrm{p} 2251=0$) connected with r2294.
<4> The connection to the source for the main and additional setpoint is estabished automatically via the setting in p1000.

1	2	3	4	5	6		7	8
Setpoint channel					FP_3030_97	51.vsd	Function diagram	- 3030 -
Main/supplementary setpoint, setpoint scaling, jogging					13.12.2010	V4.4	G120 CU240B/E-2	

STW setpoint chan p1113 r1198 [2505.2] r1198.11

1 = Direction reversal

\square

STW setpoint chan
p1110 r1198 [2505.2] $\begin{array}{ll} & \end{array}$
$1=$ Inhibit negative direction $=$ Inhibit negative direction of

STW setpoint chan
p1111 r1198 [2505.2] r1198.6
$1=$ Inhibit positive direction of rotation

1	2	3	4	5	6	7	8
Setpoint channel					FP_3040_97_53.vsd	Function diagram	- 3040 -
Direction limitation and direction reversal					13.12.2010 V4.4	G120 CU240B/E-2	

ןəииечэ ди!odıәS

2.10 V/f control

Function diagrams

6300 - V/f characteristic and voltage boost 2-583
6310 - Resonance damping and slip compensation 2-584
6320 - Vdc_max controller and Vdc_min controller (PM230 / PM240) 2-585

2.11 Vector control

Function diagrams

6030 - Speed setpoint, droop	$2-587$
6031 - Pre-control balancing, acceleration model	$2-588$
6040 - Speed controller	$2-589$
6050 - Kp_n/Tn_n adaption	$2-590$
6060 - Torque setpoint	$2-591$
6220 - Vdc_max controller and Vdc_min controller (Vector control, PM230 / PM240)	$2-592$
6490 - Speed control configuration	$2-593$
6491 - Flux control configuration	$2-594$
6630 - Upper/lower torque limit	$2-595$
6640 - Current/power/torque limits	$2-596$
6710 - Current setpoint filter	$2-597$
6714 - Iq and Id controllers	$2-598$
6721 - Id setpoint (PEM, p0300 = 2xx)	$2-599$
6722 - Field weakening characteristic, Id setpoint (ASM, p0300 = 1)	$2-600$
6723 - Field weakening controller, flux controller (ASM, p0300 = 1)	$2-601$
6724 - Field weakening controller (PEM, p0300 = 2xx)	$2-602$
6730 - Interface to the Power Module (ASM, p0300 = 1)	$2-603$
6731 - Interface to the Power Module (PEM, p0300 = 2xx)	$2-604$
6799 - Display signals	$2-605$

|Mot I_mag_rtd act [Aeff] \rightarrow r0331[D]
Field_ctrl Tn $10 \ldots 10000$ [ms] p1596 [D] (300)

Field/FI ctrl outp [Aeff] Field/FI_ctrl outp

Mot U_rated
Mot U rated
p0304 [D] (0)

<1> Value range and/or factory setting depend on p0500
PEM: Permanent-magnet synchronous motor

1	2	3	4	5	6	7	8
Vector control					FP_6724_97_02.vsd	Function diagram	- 6724 -
Field weakening controller (PEM, p0300 = 2xx)					13.12.2010 V4.4	G120 CU240B/E-2	

$\frac{\text { ןодиоэ лоэәл }}{\text { sweıбе!р ио!џวипл }}$

2.12 Free Function Blocks

Function diagrams

7200 - Run-time groups / Sampling times	2-607
7210 - AND (AND function block with 4 inputs)	2-608
7212 - OR (OR function block with 4 inputs)	2-609
7214 - XOR (XOR function block with 4 inputs)	2-610
7216 - NOT (inverter)	2-611
7220 - ADD (adder with 4 inputs), SUB (subtracter)	2-612
7222 - MUL (multiplier), DIV (divider)	2-613
7224 - AVA (absolute value generators)	2-614
7225 - NCM (numerical comparator)	2-615
7226 - PLI (scaling polyline)	2-616
7230 - MFP (pulse generator), PCL (pulse shortener)	2-617
7232 - PDE (switch-in delay)	2-618
7233 - PDF (switch-out delay)	2-619
7234 - PST (pulse extender)	2-620
7240 - RSR (RS flipflop), DFR (D flipflop)	2-621
7250 - BSW (binary changeover switch), NSW (numerical changeover switch)	2-622
7260 - LIM (limiter)	2-623
7262 - PT1 (smoothing element)	2-624
7264 - INT (integrator), DIF (differentiating element)	2-625
7270 - LVM (limit value monitor)	2-626

	Run-time group						$\rightarrow \left\lvert\, \begin{aligned} & \text { RTG sampling time [ms] } \\ & \text { r20001[0..9] }\end{aligned}\right.$
	1	2	3	4	5	6	
	r20001[1] $=8 \mathrm{~ms}$	$\mathrm{r} 20001[2]=16 \mathrm{~ms}$	r20001[3] $=32 \mathrm{~ms}$	r20001[4] = 64 ms	r20001[5] = 128 ms	$\mathrm{r} 20001[6]=256 \mathrm{~ms}$	
Logic function blocks AND, OR, XOR, NOT	X	X	X	X	X	X	
Arithmetic function blocks ADD, SUB, MUL, DIV, AVA, NCM, PLI	-	-	-	-	X	X	
Time function blocks MFP, PCL, PDE, PDF, PST	-	-	-	-	X	X	
Memory function blocks RSR, DSR	X	X	X	X	X	X	
Switch function block NSW	-	-	-	-	X	X	
Switch function block BSW	X	X	X	X	X	X	
Control function blocks LIM, PT1, INT, DIF	-	-	-	-	X	X	
Complex function blocks LVM	-	-	-	-	X	X	

OR 1
OR 3

1	2	3	4	5	6	7	8
Logic function blocks					FP_7212_97_51.vsd	Function diagram	-7212-
OR (OR function block with 4 inputs)					13.12.2010 V4.4	G120 CU240B/E-2	

PDF 0

PDF 1

PDF 1 RTG PDF 1 t ext ms
$5 \ldots 9999 \quad 0.00 \ldots \overline{6} 0000.00$ p20176 (9999) p20174 (0.00)

PDF 2

PDF 3

1	2	3	4	5	6	7	8
Time function blocks					FP_7233_97_51.vsd	Function diagram	7233 -
PDF (switch-out delay)					13.12.2010 V4.4	G120 CU240B/E-2	

2.13 Technology functions

Function diagrams

2.14 Technology controller

Function diagrams

7950 - Fixed values, binary selection (p2216 = 2) 2-630
7951 - Fixed values, direct selection (p2216 = 1) 2-631
7954 - Motorized potentiometer 2-632
7958 - Closed-loop control 2-633


```
p2230 [D] (0000 0100 bin)
\begin{tabular}{|l|}
\hline 0 \\
\hline 1 \\
\hline 2 \\
\hline 3 \\
\hline 4 \\
\hline
\end{tabular}
```

Data save active
nitial rounding-off active Non-volatile data save active
Non-volatile data save active
Ramp-function generator is always active

The setpoint for the motorized potentiometer is not saved and after ON is entered using p2240.
1 The setpoint for the motorized potentiometer is saved after OFF and after ON is entered using r2231.

With
With initial rounding. The ramp-up/down time set is exceeded accordingly
0 Non-volatile data save not activated
1 The setpoint for the motorized potentiometer is saved in a non-volatile fashion (for p2230.0 = 1)
Ramp-up encoder inactive with pulse disable.
1 The ramp-up encoder is calculated independently of the pulse enable.

1> For p2230.0 $=0$, this setpoint is entered after ON
<2> If initial rounding-off is active (p2230.2 = 1), the selected ramp-up/down times are exceeded accordingly.

1	2	3	4	5	6	7	8
Technology controller					FP_7954_97_61.vsd	Function diagram	- 7954 -
Motorized potentiometer					13.12.2010 V4.4	G120 CU240B/E-2 - 7954 -	

ィə॥одиоэ Кбоюичวә」
sweıБе！р ио！！วun」

2.15 Signals and monitoring functions

Function diagrams

8010 - Speed signals 1 2-635
8011 - Speed signals 2 2-636
8012 - Torque signals, motor locked/stalled 2-637
8013 - Load monitoring) 2-638
8014 - Thermal monitoring, power module 2-639
8016 - Thermal monitoring, motor 2-640
8017 - Thermal I2t motor model (PEM, p0300 = 2xx) 2-641
8020 - Monitoring functions 1 2-642
8021 - Monitoring functions 2 2-643

[^1]

2.16 Faults and warnings

Function diagrams

$8060-$ Fault buffer	$2-645$
$8065-$ Warning buffer	$2-646$
8070 - Fault/warning trigger word (r2129)	$2-647$
8075 - Fault/warning configuration	$2-648$

Changing the fault response for maximum 20 faults $<1>$

Changing the message type - fault <==> alarm for maximum 20 faults/alarms <1>

2.17
 Data sets

Function diagrams

8560 - Command Data Sets (CDS)	$2-650$
8565 - Drive Data Sets (DDS)	$2-651$

<1> A BICO interconnection to a parameter which is part of a drive data set always influences the currently effective data set.

1	2	3	4	5	6	7	8
Data sets					FP_8565_97_51.vsd	Function diagram	-8565-
Drive Data Sets (DDS)					13.12.2010 V4.4	G120 CU240B/E-2	

Faults and Alarms

Contents

3.1	Faults and Alarms - Overview	$3-654$
3.2	List of Faults and Alarms	$3-658$

3.1 Faults and Alarms - Overview

3.1.1 General information

Indicating fault and alarm messages (faults and alarms)

A message comprises a letter followed by the relevant number.
The letter characterizes the message type and has the following meaning:

- A means "Alarm"
- F means "Fault"
- N means "No Report" or "Internal Report"
- C means Safety message

Brackets including the letters A, F, or N indicate that the message type can be changed, e.g. A01016 (F) means that the alarm A01016 can be parameterized as a fault. The letter in brackets shows which message type can be adjusted via parameters p2118 and p2119.

Example:
p2118[5] = 1016 (alarm A01016 (F) "Firmware changed")
p2119[5] = $1(p 2119=1$ is equivalent to fault $(F))$
In this case the alarm "Firmware changed" will become a fault.
Faults are stored in parameter r0945/r0947, under their code number (e.g. F01003 = 1003). The associated fault value can be found in parameter r0949. The value 0 is entered if a fault has no fault value. It is furthermore possible to read out the point in time that a fault occurred (r0948) and the number of faults (p0952).
Alarms are stored in parameter r2110/r2122, under their code number (e.g. A01503 = 1503) and can be read out from there. The associated alarm value can be found in parameter r2124 and the time of alarm occurence in r2123.

Differences between faults and alarms

The differences between faults and alarms are as follows:
Table 3-1 Differences between faults and alarms

Type	Description
Faults	What happens when a fault occurs? - The appropriate fault reaction is triggered. - Status bit ZSW1.3 is set. - The fault is entered in the fault buffer. How are faults eliminated? - Remove the original cause of the fault. - Acknowledge the fault.
Alarms	What happens when an alarm occurs? - Status bit ZSW1.7 is set. - The alarm is entered in the alarm buffer. How are alarms eliminated? - Alarms acknowledge themselves. If the cause of the alarm is no longer present, then they automatically reset themselves.

3.1.2 Fault reactions

Specifies the default reaction when a fault occurs. The optional brackets indicate whether the default fault reactions can be changed and which fault reactions can be adjusted via parameters (p2100, p2101). The following fault reactions are defined:

Table 3-2 Fault reactions

List	PROFIdrive	Reaction	Description
NONE		None	No reaction when a fault occurs.
OFF1	ON/ OFF	Brake along the ramp-function generator deceleration ramp followed by pulse inhibit	Speed control - n _set $=0$ is input immediately to brake the drive along the deceleration ramp (p1121). - Zero speed is detected if the actual speed drops below the threshold in p1226 or if the monitoring time (p1227) started when speed setpoint <= speed threshold (p1226) has expired. Closed-loop torque control (p1300 = 22) - The following applies to closed-loop torque control mode: Reaction as for OFF2. - When changing over to closed-loop control using p1501, the following applies: There is no dedicated braking response.
OFF2	$\begin{aligned} & \text { COAST } \\ & \text { STOP } \end{aligned}$	Internal/external pulse inhibite	Speed control and closed-loop torque control - Instantaneous pulse suppression, the drive "coasts" to a standstill - Switching on inhibited is activated.
OFF3	QUICK STOP	Brake along OFF3 deceleration ramp followed by pulse inhibit	Speed control - n_set=0 is input immediately to brake the drive along the OFF3 deceleration ramp (p1135). - Zero speed is detected if the actual speed drops below the threshold in p1226 or if the monitoring time (p1227) started when speed setpoint <= speed threshold (p1226) has expired. - Switching on inhibited is activated. Closed-loop torque control (p1300 = 22) - Changeover to speed-controlled operation and other reactions as described for speed-controlled operation.
STOP2	-	n_set $=0$	- n _set $=0$ is input immediately to brake the drive along the OFF3 deceleration ramp (p1135). Although ramping down along the OFF3 deceleration ramp r0052 bit $5=1$. - The drive remains in closed-loop speed control mode.
IASC/DCBRK	-	-	- When a fault occurs with this fault reaction, DC braking is triggered. - The DC brake must have been put into operation (p1230 to p1239).

3.1.3 Acknowledgement of faults

The list of faults and alarms specifies how to acknowledge each fault after the cause has been remedied. The optional brackets indicate whether the default acknowledgement can be changed and which acknowledgement can be adjusted via parameter (p2126, p2127).

Table 3-3 Acknowledgement of faults

Acknowledgement	Description
POWER ON	The fault is acknowledged by a POWER ON process (switch drive unit off and on again). Note: If this action has not eliminated the fault cause, the fault is displayed again immediately after power up.
IMMEDIATELY	Faults can be acknowledged as follows: 1 Acknowledge by setting parameter: $\text { p3981 = } 0 \text {--> } 1$ 2 Acknowledge via binector inputs: p2103 BI: 1. Acknowledge faults p2104 BI: 2. Acknowledge faults p2105 BI: 3. Acknowledge faults 3 Acknowledge using PROFIBUS control signal: STW1.7 = 0 --> 1 (edge) Note: - These faults can also be acknowledged by a POWER ON operation. - If this action has not eliminated the fault cause, the fault is displayed again immediately after power up.

3.2 List of Faults and Alarms

Product: SINAMICS G120 CU240, Version: 4402100, Language: eng, Objects: CU240B-2, CU240B-2 DP, CU240E-2, CU240E-2 DP, CU240E-2 DP F, CU240E-2 F

F01000	Internal software error
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.	
Remedy:	- evaluate fault buffer (ro945).
	- carry out a POWER ON (power off/on) for all components.
	- upgrade firmware to later version.
	- contact the Hotline.
	replace the Control Unit.

F01002	Internal software error
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	An internal software error has occurred. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting. - carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline.

F01003	Acknowledgement delay when accessing the memory
Reaction:	OFF2
Acknowledge:	IMMEDIATELY Cause:
	A memory area was accessed that does not return a "READY". Fault value (ro949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components. - contact the Hotline.

N01004 (F, A)	Internal software error
Reaction:	NONE
Acknowledge:	NONE
Cause:	An internal software error has occurred. Fault value (r0949, hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- read out diagnostics parameter (r9999). - contact the Hotline. See also: r9999 (Software error internal supplementary diagnostics)
F01005	File upload/download error
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The upload or download of EEPROM data was unsuccessful. Fault value (r0949, interpret hexadecimal): yyxxxx hex: $y y=$ component number, $x x x x=$ fault cause $x x x x=000 B$ hex $=11$ dec: Power unit component has detected a checksum error. xxxx $=000 F$ hex $=15$ dec: The selected power unit will not accept the content of the EEPROM file. xxxx = 0011 hex = 17 dec: Power unit component has detected an internal access error. $\text { xxxx = } 0012 \text { hex = } 18 \text { dec: }$ After several communication attempts, no response from the power unit component. xxxx = 008B hex = 140 dec : EEPROM file for the power unit component not available on the memory card. xxxx $=008 \mathrm{D}$ hex $=141 \mathrm{dec}$: An inconsistent length of the firmware file was signaled. It is possible that the download/upload has been interrupted. xxxx $=0090$ hex $=144 \mathrm{dec}$: When checking the file that was loaded, the component detected a fault (checksum). It is possible that the file on the memory card is defective. xxxx $=0092$ hex $=146 \mathrm{dec}$: This SW or HW does not support the selected function. xxxx $=009 \mathrm{C}$ hex $=156 \mathrm{dec}$: Component with the specified component number is not available (p7828). xxxx = Additional values: Only for internal Siemens troubleshooting.
Remedy:	Save a suitable firmware file or EEPROM file for upload or download in folder "/ee_sac/" on the memory card.
A01009 (N)	CU: Control module overtemperature
Reaction:	NONE
Acknowledge:	NONE
Cause: Remedy:	The temperature (r0037[0]) of the control module (Control Unit) has exceeded the specified limit value. - check the air intake for the Control Unit. - check the Control Unit fan. Note: The alarm automatically disappears after the limit value has been undershot.
F01010	Drive type unknown
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An unknown drive type was found.
Remedy:	- replace Power Module. - carry out a POWER ON (power off/on). - upgrade firmware to later version. - contact the Hotline.

F01015	Internal software error
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred. Fault value (r0949, decimal interpretation) Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline.
A01016 (F)	Firmware changed
Reaction:	NONE
Acknowledge:	NONE
Cause:	At least one firmware file in the directory /SIEMENS/SINAMICS/ has been changed without authorization with respect to the version shipped from the factory. No changes are permitted in this directory. Alarm value (r2124, interpret decimal): 0 : Checksum of one file is incorrect. 1: File missing. 2: Too many files. 3: Incorrect firmware version. 4: Incorrect checksum of the back-up file. See also: r9925 (Firmware file incorrect)
Remedy:	For the non-volatile memory for the firmware (memory card/device memory), restore the delivery condition. Note: The file involved can be read out using parameter r9925. See also: r9926 (Firmware check status)

A01017	Component lists changed
Reaction:	NONE
Acknowledge:	NONE
Cause:	On the memory card, one file in the directory /SIEMENS/SINAMICS/DATA or /ADDON/SINAMICS/DATA has been
illegally changed with respect to that supplied from the factory. No changes are permitted in this directory.	
	Alarm value (r2124, interpret decimal):
	zyx dec: $x=$ Problem, $y=$ Directory, $x=$ File name
	$x=1:$ File does not exist.
	$x=2:$ Firmware version of the file does not match the software version.
	$x=3:$ File checksum is incorrect.
	$y=0:$ Directory /SIEMENS/SINAMICS/DATA/
	$y=1:$ Directory /ADDON/SINAMICS/DATA/
	$z=0:$ File MOTARM.ACX
	$z=1:$ File MOTSRM.ACX
	$z=2:$ File MOTSLM.ACX
	$z=3:$ File ENCDATA.ACX
	$z=4:$ File FILTDATA.ACX
	$z=5:$ File BRKDATA.ACX
	$z=6:$ File DAT_BEAR.ACX
	$z=7:$ File CFG_BEAR.ACX
	For the file on the memory card involved, restore the status originally supplied from the factory.

F01018	Booting has been interrupted several times
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	Module booting was interrupted several times. Possible reasons for booting being interrupted: - POWER OFF of the module. - CPU crash. - USER data invalid. After this fault is output, then the module is booted with the factory settings.
Remedy:	Power down the module and power it up again. Note: After switching on, the module reboots from the USER data (if available). If the fault situation is repeated, then this fault is again output after several interrupted boots.

A01019	Writing to the removable data medium unsuccessful
Reaction:	NONE
Acknowledge:	NONE
Cause:	The write access to the removable data medium was unsuccessful.
Remedy:	Remove and check the removable data medium. Then run the data backup again.

A01020	Write to RAM disk unsuccessful
Reaction:	NONE
Acknowledge:	NONE
Cause:	The write access to the internal RAM disk was unsuccessful.
Remedy:	Adapt the size of the system logbook (p9930) to the internal RAM disk.

F01023	Software timeout (internal)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An internal software timeout has occurred. Fault value (r0949, decimal interpretation):
Remedy:	Only for internal Siemens troubleshooting. - carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline.

A01028	Configuration error
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameterization that was downloaded was generated with a different module type (Order No., MLFB). Remedy:
Save parameters in a non-volatile fashion (p0971 = 1).	

The monitoring time should be set as short as possible. A long monitoring time means a late response when the communication fails!

F01033	Units changeover: Reference parameter value invalid Reaction: NONE
Cacknowledge:	IMMEDIATELY When changing over the units to the referred representation type, it is not permissible for any of the required reference parameters to be equal to 0.0 Fault value (r0949, parameter): Reference parameter whose value is 0.0. See also: p0505 (Selecting the system of units), p0595 (Selecting technological units) Set the value of the reference parameter to a number different than 0.0. See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004
Remedy:	Units changeover: Calculation parameter values after reference value change unsuccessful
F01034	NONE
Reaction:	IMMEDIATELY The change of a reference parameter meant that for an involved parameter the selected value was not able to be re- calculated in the per unit representation. The change was rejected and the original parameter value restored.
Cause:	Fault value (r0949, parameter): Parameter whose value was not able to be re-calculated.
Remedy:	See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004 Select the value of the reference parameter such that the parameter involved can be calculated in the per unit representation.
See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004	

A01035 (F)	ACX: Boot from the back-up parameter back-up files
Reaction:	NONE
Acknowledge:	NONE
Cause:	When the Control Unit is booted, no complete data set was found from the parameter back-up files. The last time that the parameterization was saved, it was not completely carried out. Instead, a back-up data set or a back-up parameter back-up file is downloaded. Alarm value (r2124, interpret hexadecimal): Only for internal Siemens troubleshooting. If you have saved the project using the commissioning software, carry out a new download for your project. Save using the function "Copy RAM to ROM" or with p0971 = 1 so that all of the parameter files are again completely written to the non-volatile memory.

F01036 (A) ACX: Parameter back-up file missing
Reaction: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: When downloading the device parameterization, a parameter back-up file associated with a drive object cannot be found. Neither a PSxxxyyy.ACX, a PSxxxyyy.NEW nor a PSxxxyyy.BAK parameter back-up file exists in the nonvolatile memory for this drive object.
Fault value (r0949, interpret hexadecimal):
Byte 1: yyy in the file name PSxxxyyy.ACX
yyy = 000 --> consistency back-up file
yyy $=001$... 062 --> drive object number
yyy = 099 --> PROFIBUS parameter back-up file
Byte 2, 3, 4:
Only for internal Siemens troubleshooting.
Remedy: If you have saved the project data using the commissioning software, carry out a new download for your project. Save using the function "Copy RAM to ROM" or with p0971 = 1 so that all of the parameter files are again completely written to the non-volatile memory.
If you have not saved the project data, then first commissioning of the system has to be carried out again.

F01037 (A)	ACX: Re-naming the parameter back-up file unsuccessful
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Re-naming after saving a parameter back-up file in the non-volatile memory was unsuccessful. One of the parameter back-up files to be re-named had the "read only" attribute. The parameter back-up files are saved in the directory IUSERISINAMICSIDATA. It is possible that the non-volatile memory is defective. Fault value (r0949, interpret hexadecimal): Byte 1: yyy in the file names PSxxxyyy.* or CAxxxyyy.* or CCxxxyyy.* yyy = 000 --> consistency back-up file yyy = 099 --> PROFIBUS parameter back-up file PSxxx099.* Byte 2: xxx in the file name PSxxxyyy.* $x x x=000$--> data save started with p0971 = 1 xxx = 010 --> data save started with p0971 = 10 xxx = 011 --> data save started with p0971 = 11 xxx = 012 --> data save started with p0971 = 12 Byte 4, 3: Only for internal Siemens troubleshooting.
Remedy:	- check whether one of the files to be overwritten has the attribute "read only" and change this file attribute to "writable". Check all of the files (PSxxxyyy.*, CCxxxyyy.*, CAxxxyyy.*) that belong to drive yyy designated in the fault value. - replace the memory card or Control Unit.
F01038 (A)	ACX: Loading the parameter back-up file unsuccessful
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	An error has occurred when downloading PSxxxyyy.ACX or PTxxxyyy.ACX files from the non-volatile memory. Fault value (r0949, interpret hexadecimal): Byte 1: yyy in the file name PSxxxyyy.ACX yyy = 000 --> consistency back-up file yyy $=001 \ldots 062$--> drive object number yyy = 099 --> PROFIBUS parameter back-up file Byte 2: 255 = incorrect drive object type 254 = topology comparison unsuccessful -> drive object type was not able to be identified Reasons could be: - incorrect component type in the actual topology - component does not exist in the actual topology - component not active Otherwise for internal Siemens troubleshooting. Byte 4, 3: Only for internal Siemens troubleshooting.
Remedy:	- If you have saved the project data using the commissioning software, carry out a new download for your project. Save using the function "Copy RAM to ROM" or with p0971 = 1 so that all of the parameter files are again completely written to the non-volatile memory. - replace the memory card or Control Unit.

F01039 (A)	ACX: Writing to the parameter back-up file was unsuccessful
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Writing to at least one parameter back-up file PSxxxyyy.*** in the non-volatile memory was unsuccessful. - In the directory /USER/SINAMICS/DATA/ at least one parameter back-up file PSxxxyyy.*** has the "read only" file attribute and cannot be overwritten. - There is not sufficient free memory space available. - The non-volatile memory is defective and cannot be written to. Fault value (r0949, interpret hexadecimal): dcba hex a = yyy in the file names PSxxxyyy.*** a = 000 --> consistency back-up file a = 001 ... 062 --> drive object number a = 099 --> PROFIBUS parameter back-up file $b=x x x$ in the file names PSxxxyyy.*** b = 000 --> data save started with p0971 = 1 $b=010$--> data save started with p0971 $=10$ $b=011$--> data save started with p0971 $=11$ b = 012 --> data save started with p0971 = 12 d, c: Only for internal Siemens troubleshooting.
Remedy:	- check the file attribute of the files (PSxxxyyy.***, CAxxxyyy.***, CCxxxyyy.***) and, if required, change from "read only" to "writeable". - check the free memory space in the non-volatile memory. Approx. 80 kbyte of free memory space is required for every drive object in the system. - replace the memory card or Control Unit.
F01040	Save parameter settings and carry out a POWER ON
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	A parameter has been changed that requires the parameters to be backed up and the Control Unit to be switched OFF and ON again.
Remedy:	- Save parameters (p0971). - Switch Control Unit OFF/ON (POWER ON).
F01042	Parameter error during project download
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	An error was detected when downloading a project using the commissioning software (e.g. incorrect parameter value). For the specified parameter, it was detected that dynamic limits were exceeded that may possibly depend on other parameters. Fault value (r0949, interpret hexadecimal): ccbbaaaa hex aaaa $=$ Parameter bb = Index cc = fault cause 0: Parameter number illegal. : Parameter value cannot be changed. : Lower or upper value limit exceeded. Sub-index incorrect. 4: No array, no sub-index. 5: Data type incorrect. : Setting not permitted (only resetting). 7: Descriptive element cannot be changed. 9: Descriptive data not available. 11: No master control. 15: No text array available. 17: Task cannot be executed due to operating state. 20: Illegal value. 21: Response too long. 22: Parameter address illegal. 23: Format illegal. 24: Number of values not consistent. 108: Unit unknown. Additional values: Only for internal Siemens troubleshooting.
Remedy:	- enter the correct value in the specified parameter. - identify the parameter that restricts the limits of the specified parameter.

F01043	Fatal error at project download
Reaction:	OFF2 (OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A fatal error was detected when downloading a project using the commissioning software.
	Fault value (rog49, decimal interpretation):
	1: Device status cannot be changed to Device Download (drive object ON?).
	2: Incorrect drive object number.
	8: Maximum number of drive objects that can be generated exceeded.
	11: Error while generating a drive object (global component).
	12: Error while generating a drive object (drive component).
	13: Unknown drive object type.
	14: Drive status cannot be changed to "ready for operation" (po947 and p0949).
	15: Drive status cannot be changed to drive download.
	16: Device status cannot be changed to "ready for operation".
	18: A new download is only possible if the factory settings are restored for the drive unit.
	20: The configuration is inconsistent.
Additional values: only for internal Siemens troubleshooting.	
Remedy:	- use the current version of the commissioning software.
	- modify the offline project and download again (e.g. compare the motor and Power Module in the offline project and
on the drive).	
	- change the drive state (is a drive rotating or is there a message/signal?).
- carefully note any other messages/signals and remove their cause.	

F01044	CU: Descriptive data error
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An error was detected when loading the descriptive data saved in the non-volatile memory.
Remedy:	Replace the memory card or Control Unit.

A01045	Configuring data invalid
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error was detected when evaluating the parameter files PSxxxyyy.ACX, PTxxxyyy.ACX, CAxxxyyy.ACX, or CCxxxyyy.ACX saved in the non-volatile memory. Alarm value (r2124, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	Restore the factory setting using (p0970 = 1) and re-load the project to the drive unit. Operation without any restrictions is then possible. After downloading the project, save the parameters in STARTER using "Copy RAM to ROM" or with p0971 = 1. This overwrites the incorrect parameter files in the non-volatile memory.

A01049	It is not possible to write to file
Reaction:	NONE
Acknowledge:	NONE
Cause:	It is not possible to write into a write-protected file (PSxxxxxx.acx). The write request was interrupted. Alarm value (r2124, interpret decimal): Remedy:\quadDrive object number.
	Check whether the "write protected" attribute has been set for the files in the non-volatile memory under
	.../USER/SINAMICS/DATA/... When required, remove write protection and save again (e.g. set p0971 to 1).

A01064 (F)	CU: Internal error (CRC)
Reaction:	NONE
Acknowledge:	NONE
Cause:	CRC error in the Control Unit program memory
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline.

A01066	Buffer memory: 70\% fill level reached or exceeded
Reaction:	NONE
Acknowledge:	NONE
Cause:	The non-volatile buffer memory for parameter changes is filled to at least 70%. This can also occur if the buffer memory is active (p0014 $=1$) and parameters are continually changed via a fieldbus system.
Remedy:	If required, de-activate and clear the buffer memory (p0014 $=0$). If required, clear the buffer memory (p0014 $=2$). In the following cases, the entries in the buffer memory are transferred into the ROM and then the buffer memory is cleared: - po971 $=1$ - power down/power up the Control Unit See also: p0014 (Buffer memory mode)

A01067	Buffer memory: $\mathbf{1 0 0} \%$ fill level reached
Reaction:	NONE
Acknowledge:	NONE
Cause:	The non-volatile buffer memory for parameter changes is filled to 100%. All additional parameter changes will no longer be taken into account in the non-volatile buffer memory. However, parameter changes can still be made in the volatile memory (RAM). This can also occur if the buffer memory is active (p0014 $=1$) and parameters are continually changed via a fieldbus system. Remedy: If required, de-activate and clear the buffer memory (p0014 $=0$). In the following cases, the entries in the buffer memory are transferred into the ROM and then the buffer memory is cleared: - p0971 $=1$ - power down/power up the Control Unit See also: p0014 (Buffer memory mode)

A01069	Parameter backup and device incompatible
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameter backup on the memory card and the device type do not match (e.g. a memory card with the parameter backup of a SINAMICS CU230 is inserted in SINAMICS CU240). The module boots with the factory settings.
Remedy:	- insert a memory card with compatible parameter backup and carry out a POWER ON. - insert a memory card without parameter backup and carry out a POWER ON. - remove the memory card and carry out POWER ON. - save the parameters (p0971 = 1).

F01105 (A) CU: Insufficient memory
Reaction: OFF1
Acknowledge: POWER ON

Cause: Too many data sets are configured on this Control Unit. Fault value (r0949, decimal interpretation): Only for internal Siemens troubleshooting.
Remedy: - reduce the number of data sets.

F01107	Save to memory card unsuccessful
Reaction:	NONE
Acknowledge:	
Cause:	IMMEDIATELY A data save to the memory card was not able to be successfully carried out. - Memory card is defective. - Insufficient space on memory card. Fault value (ro949, decimal interpretation): 1: The file on the RAM was not able to be opened. 2: The file on the RAM was not able to be read. 3: A new directory could not be created on the memory card. 4: A new file could not be created on the memory card. 5: A new file could not be writen on the memory card. - try to save again.
	- replace the memory card or Control Unit.

F01250	CU: CU-EEPROM incorrect read-only data
Reaction:	NONE (OFF2)
Acknowledge:	POWER ON
Cause:	Error when reading the read-only data of the EEPROM in the Control Unit. Fault value (ro949, decimal interpretation): Only for internal Siemens troubleshooting.
- carry out a POWER ON.	
- replace the Control Unit.	

F01512	BICO: No scaling available
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An attempt was made to determine a conversion factor for a scaling that does not exist. Fault value (r0949, decimal interpretation): Unit (e.g. corresponding to SPEED) for which an attempt was made to determine a factor.
Remedy:	Apply scaling or check the transfer value.
F01513 (A)	BICO: Interconnection cross DO with different scalings
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested BICO interconnection was established. However, a conversion is made between the BICO output and BICO input using the reference values. An interconnection is made between different drive objects and the BICO output has different normalized units than the BICO input or the normalized units are the same but the reference values are different. Example 1: BICO output with voltage normalized unit, BICO input with current normalized unit, BICO output and BICO input lie in different drive objects. This means that the factor p2002/p2001 is calculated between the BICO output and the BICO input. p2002: contains the reference value for current p2001: contains the reference value for voltage Example 2: BICO output with voltage normalized unit in drive object 1 (DO1), BICO input with voltage normalized unit in drive object 2 (DO2). The reference values for voltage (p2001) of the two drive objects have different values. This means that the factor p2001(DO1)/p2001(DO2) is calculated between the BICO output and the BICO input. p2001: contains the reference value for voltage, drive objects 1, 2 Fault value (r0949, decimal interpretation): Parameter number of the BICO input (signal sink).
Remedy:	Not necessary.
A01514 (F)	BICO: Error when writing during a reconnect
Reaction:	NONE
Acknowledge:	NONE
Cause:	During a reconnect operation (e.g. while booting or downloading - but can also occur in normal operation) a parameter was not able to be written to. Example: When writing to a double word BICO input in the second index, the memory areas overlap (e.g. p8861). The parameter is then reset to the factory setting. Alarm value (r2124, interpret decimal): Parameter number of the BICO input (signal sink).
Remedy:	Not necessary.
F01515 (A)	BICO: Writing to parameter not permitted as the master control is active
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When changing the number of CDS or when copying from CDS, the master control is active.
Remedy:	If required, return the master control and repeat the operation.
A01590 (F)	Drive: Motor maintenance interval expired
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected service/maintenance interval for this motor was reached. Alarm value (r2124, interpret decimal): Motor data set number. See also: p0650 (Actual motor operating hours), p0651 (Motor operating hours maintenance interval)
Remedy:	carry out service/maintenance and reset the service/maintenance interval (p0651).

F01600	SI P1: STOP A initiated
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on processor 1 has detected an error and initiated a STOP A. - forced checking procedure of the safety shutdown path on processor 1 unsuccessful. - subsequent response to fault F01611 (defect in a monitoring channel). Fault value (r0949, decimal interpretation): 0 : Stop request from processor 2. 1005: Pulses suppressed although STO not selected and there is no internal STOP A present. 1010: Pulses enabled although STO is selected or an internal STOP A is present. 9999: Subsequent response to fault F01611.
Remedy:	- select Safe Torque Off and de-select again. For fault value = 9999: - carry out diagnostics for fault F01611. Note: STO: Safe Torque Off
F01611	SI P1: Defect in a monitoring channel
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on processor 1 has detected a fault in the crosswise data comparison between the two monitoring channels and has initiated a STOP F. Fault F01600 (SI P1: STOP A initiated) is output as a consequence of this fault. Fault value (r0949, decimal interpretation): 0 : Stop request from processor 2. 1 ... 999: Number of the cross-checked data that resulted in this fault. This number is also displayed in r9795. 2: SI enable safety functions (p9601, p9801). Crosswise data comparison is only carried out for the supported bits. 3: SI F-DI changeover tolerance time (p9650, p9850). 8: SI PROFIsafe address (p9610, p9810). 9: SI debounce time for STO (p9651, p9851). 1000: Watchdog timer has expired. Within a time of approx. $5 \times$ p9650, too many switching operations have occurred at F-DI, or STO (also as subsequent response) was initiated too frequently via PROFIsafe. 1001, 1002: Initialization error, change timer / check timer. 2000: Status of the STO selection for both monitoring channels are different. 2001: Feedback of the safe pulse suppression on the two monitoring channels are different. 6000 ... 6999: Error in the PROFIsafe control. For these fault values, the failsafe control signals (failsafe values) are transferred to the safety functions. The significance of the individual message values is described in safety message C01711.
Remedy:	Re fault values 1 ... 999 described in "Cause": - check the cross-checked data that resulted in a STOP F. - carry out a POWER ON (power off/on). For fault value $=1000$: - check the wiring of the F-DI (contact problems). - PROFIsafe: Remove contact problems/faults at the PROFIBUS master/PROFINET controller. Re fault value = 1001, 1002: - carry out a POWER ON (power off/on). Re fault value $=2000,2001,2002,2004,2005$: - check the tolerance time F-DI changeover and if required, increase the value (p9650/p9850). - check the wiring of the F-DI (contact problems). - check the causes of the STO selection in r9772. When the SI Motion functions are active (p9501 = 1), STO can also be selected using these functions. Re fault value = 6000 ... 6999: Refer to the description of the message values in safety message C01711. Re fault values that are described in "Cause": - carry out a POWER ON (power off/on). - contact the Hotline - replace Control Unit. Note: F-DI: Failsafe Digital Input STO: Safe Torque Off

N01620 (F, A)	SI P1: Safe Torque Off active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "Safe Torque Off" (STO) function has been selected on processor 1 using the input terminal and is active. Note: This message does not result in a safety stop response.
Remedy:	Not necessary. Note: STO: Safe Torque Off
F01625	SI P1: Sign-of-life error in safety data
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on processor 1 has detected an error in the sign-of-life of the safety data and initiated a STOP A. - there is a communication error between processor 1 and processor 2 or communication has failed. - a time slice overflow of the safety software has occurred. Fault value (r0949, decimal interpretation): Only for internal Siemens troubleshooting.
Remedy:	- select Safe Torque Off and de-select again. - carry out a POWER ON (power off/on). - check whether additional faults are present and if required, perform diagnostics. - check the electrical cabinet design and cable routing for EMC compliance
F01649	SI P1: Internal software error
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal error in the Safety Integrated software on processor 1 has occurred. Note: This fault results in a STOP A that cannot be acknowledged. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on). - re-commission the "Safety Integrated" function and carry out a POWER ON. - contact the Hotline. - replace Control Unit.

F01650	SI P1: Acceptance test required
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on processor 1 requires an acceptance test. Note: This fault results in a STOP A that can be acknowledged. Fault value (r0949, decimal interpretation): 130: Safety parameters for processor 2 not available. Note: This fault value is always output when Safety Integrated is commissioned for the first time. 1000: Reference and actual checksum on processor 1 are not identical (booting). - at least one checksum-checked piece of data is defective. 2000: Reference and actual checksum on processor 1 are not identical (commissioning mode). - reference checksum incorrectly entered on processor 1 (p9799 not equal to r9798). - when de-activating the safety functions, p9501 was not deleted. 2001: Reference and actual checksum on processor 2 are not identical (commissioning mode). - reference checksum incorrectly entered on processor 2 (p9899 not equal to r9898). - when de-activating the safety functions, p9501 was not deleted. 2002: Enable of safety-related functions between the processor 1 and processor 2 differ (p9601 not equal to p9801). 2003: Acceptance test is required as a safety parameter has been changed. 2004: An acceptance test is required because a project with enabled safety-functions has been downloaded. 2005: The Safety logbook has identified that a functional safety checksum has changed. An acceptance test is required. 2020: Error when saving the safety parameters for the processor 2. 9999: Subsequent response of another safety-related fault that occurred when booting that requires an acceptance test.
Remedy:	For fault value = 130: - carry out safety commissioning routine. For fault value = 1000: - again carry out safety commissioning routine. - replace the memory card or Control Unit. For fault value = 2000: - check the safety parameters on processor 1 and adapt the reference checksum (p9799). For fault value = 2001: - check the safety parameters on processor 2 and adapt the reference checksum (p9899). For fault value = 2002: - enable the safety-related functions on processor 1 and check processor 2 (p9601 = p9801). Re fault value = 2003, 2004, 2005: - Carry out an acceptance test and generate an acceptance report. The fault with fault value 2005 can only be acknowledged when the "STO" function is de-selected. For fault value = 2020: - again carry out safety commissioning routine. - replace the memory card or Control Unit. For fault value = 9999: - carry out diagnostics for the other safety-related fault that is present. Note: STO: Safe Torque Off See also: p9799 (SI setpoint checksum SI parameters (processor 1)), p9899 (SI setpoint checksum SI parameters (processor 2))
F01651	SI P1: Synchronization safety time slices unsuccessful
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The "Safety Integrated" function requires synchronization of the safety time slices between processor 1 and processor 2. This synchronization was unsuccessful. Note: This fault results in a STOP A that cannot be acknowledged. Fault value (r0949, decimal interpretation): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on).

F01653	SI P1: PROFIBUS configuration error
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	There is a PROFIBUS configuration error for using Safety Integrated monitoring functions with a higher-level control. Note: For safety functions that have been enabled, this fault results in a STOP A that cannot be acknowledged. Fault value (r0949, decimal interpretation): 200: A safety slot for receive data from the control has not been configured. 210, 220: The configured safety slot for the receive data from the control has an unknown format. 230: The configured safety slot for the receive data from the F-PLC has the incorrect length. 231: The configured safety slot for the receive data from the F-PLC has the incorrect length. 250: A PROFIsafe slot is configured in the higher-level F control, however PROFIsafe is not enabled in the drive. 300: A safety slot for the send data to the control has not been configured. 310, 320: The configured safety slot for the send data to the control has an unknown format. 330: The configured safety slot for the send data to the F-PLC has the incorrect length. 331: The configured safety slot for the send data to the F-PLC has the incorrect length.
Remedy:	The following generally applies: - check and, if necessary, correct the PROFIBUS configuration of the safety slot on the master side. - upgrade the Control Unit software. For fault value $=250$: - remove the PROFIsafe configuring in the higher-level F control or enable PROFIsafe in the drive. Re fault value = 231, 331: - configure the PROFIsafe telegram matching the parameterization in the F-PLC. The following applies for p9501.30 = 1 (F-DI via PROFIsafe is enabled): PROFIsafe telegram 900 must be configured. The following applies for p9501.30 = 0 (F-DI via PROFIsafe is not enabled): PROFIsafe telegram 30 must be configured.
F01655	SI P1: Align monitoring functions
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An error has occurred when aligning the Safety Integrated monitoring functions on processor 1 and processor 2. No common set of supported SI monitoring functions was able to be determined. - there is a communication error between processor 1 and processor 2 or communication has failed. Note: This fault results in a STOP A that cannot be acknowledged. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on). - check the electrical cabinet design and cable routing for EMC compliance
F01656	SI P1: Parameter processor 2 parameter error
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When accessing the Safety Integrated parameters for the processor 2 in the non-volatile memory, an error has occurred. Note: This fault results in a STOP A that can be acknowledged. Fault value (r0949, decimal interpretation): 129: Safety parameters for processor 2 corrupted. 131: Internal software error 132: Communication errors when uploading or downloading the safety parameters. 255: Internal software error on the Control Unit.
Remedy:	- re-commission the safety functions. - replace the memory card or Control Unit. For fault value = 129: - activate the safety commissioning mode ($p 0010=95$). - adapt the PROFIsafe address (p9610). - start the copy function for SI parameters (p9700 = D0 hex). - acknowledge data change (p9701 = DC hex). - exit the safety commissioning mode (p0010 = 0). - save all parameters (p0971 = 1 or "copy RAM to ROM"). - carry out a POWER ON (power off/on) for the Control Unit. For fault value $=132$: - check the electrical cabinet design and cable routing for EMC compliance

F01659	SI P1: Write request for parameter rejected
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The write request for one or several Safety Integrated parameters on processor 1 was rejected. Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, decimal interpretation):
	1: The Safety Integrated password is not set.
	2: A reset of the drive parameters was selected. However, the Safety Integrated parameters were not reset, as Safety Integrated is presently enabled.
	3: The interconnected STO input is in the simulation mode.
	10: An attempt was made to enable the STO function although this cannot be supported.
	14: An attempt was made to enable the PROFIsafe communications although this cannot be supported.
	15: An attempt was made to enable the motion monitoring functions integrated in the drive although these cannot be supported.
	18: An attempt was made to enable the PROFIsafe function for Basic Functions although this cannot be supported.
	20: An attempt was made to simultaneously enable both the drive-integrated motion monitoring functions via integrated F-DI and STO via terminals, even though these cannot be supported at the same time.
	21: An attempt was made to enable the Safety Integrated functions although these cannot be supported by the connected Power Module. See also: p0970, p3900, r9771, r9871
Remedy:	For fault value = 1:
	- set the Safety Integrated password (p9761).
	For fault value $=2$:
	- Inhibit Safety Integrated (p9501, p9601) or reset safety parameters (p0970 = 5), then reset the drive parameters again.
	For fault value $=3$:
	- end the simulation mode for the digital input (p0795).
	Re fault value $=10,14,15,18,20$:
	- check whether there are faults in the safety function alignment (F01655, F30655) and if required, carry out diagnostics for the faults involved.
	- use a Control Unit that supports the required function.
	For fault value $=21$:
	- use a Power Module that supports the Safety Integrated functions.
	Note:
	STO: Safe Torque Off
	See also: p9501, p9601, p9761, p9801
F01660	SI P1: Safety-related functions not supported
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The Power Module does not support the safety-related functions. Safety Integrated cannot be commissioned. Note:
	This fault does not result in a safety stop response.
Remedy:	- use a Power Module that supports the safety-related functions.
F01662	Error internal communications
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	A module-internal communication error has occurred.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on).
	- upgrade firmware to later version.
	- contact the Hotline.

F01663	SI P1: Copying the SI parameters rejected
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	One of the following values is saved in p9700 or was entered offline: 87 or 208. This is the reason that when booting, an attempt is made to copy SI parameters from processor 1 to processor 2. However, no safety-relevant function has been selected on processor 1 (p9501 = 0, p9601 = 0). This is the reason that copying is not possible. Note: This fault does not result in a safety stop response. See also: p9700 (SI copy function)
Remedy:	- Set p9700 to 0. - Check p9501 and/or p9601 and if required, correct. - Restart the copying function by entering the corresponding value into p9700.
F01665	SI P1: System is defective
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A system defect was detected before the last boot or in the actual one. The system might have been rebooted (reset). Fault value (r0949, interpret hexadecimal): 200000 hex, 400000 hex, 8000yy hex (yy any): - Fault in the actual booting/operation. 800004 hex: - Parameters p9500/p9300 are, under certain circumstances, not the same. In addition, Safety message C01711/C30711 is displayed. Additional values: - defect before the last time that the system booted.
Remedy:	- carry out a POWER ON (power off/on). - upgrade firmware to later version. - contact the Hotline. Re fault value $=200000$ hex, 400000 hex, $8000 y y$ hex (yy any): - ensure that the Control Unit is connected to the Power Module. Re fault value $=800004$ hex: - Check that parameters p9500/p9300 are the same.

A01666 (F)	SI Motion P1: Steady-state (static) 1 signal at the F-DI for safety-relevant acknowledgement
Reaction:	NONE
Acknowledge:	NONE
Cause:	A logical 1 signal is present at the F-DI configured in p10006 for more than 10 seconds. If, at the F-DI no acknowledgment was performed for safe acknowledgment, then a steady-state logical and 0 signal must be present. This avoids unintentional safety-relevant acknowledgement (or the "Internal Event Acknowledge" signal) if a wire breaks or one of the two digital inputs bounces.
Semedy:	Set the fail-safe digital input (F-DI) to a logical 0 signal (10006). Note: F-DI: Failsafe Digital Input

A01669 (F, N) SI Motion: Unfavorable combination of motor and power unit
Reaction: NONE

Acknowledge: NONE
Cause: The combination of motor and power unit used is not suitable for using safe motion monitoring functions without an encoder.
Alarm value (r2124, interpret decimal):
Number of the motor data set, which caused the fault.
Remedy: Use a suitable power unit with a lower power rating or a motor with a higher power rating.

F01680	SI Motion P1: Checksum error safety monitoring functions
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The actual checksum calculated by the drive and entered in r9728 via the safety-relevant parameters does not match the reference checksum saved in p9729 at the last machine acceptance. Safety-relevant parameters have been changed or a fault is present. Note: This fault results in a STOP A that can be acknowledged. Fault value (r0949, decimal interpretation): 0 : Checksum error for SI parameters for motion monitoring. 1: Checksum error for SI parameters for actual values. 2: Checksum error for SI parameters for component assignment.
Remedy:	- check the safety-relevant parameters and if required, correct. - perform a POWER ON if safety parameters requiring a POWER ON have been modified. - carry out an acceptance test.
F01681	SI Motion P1: Incorrect parameter value
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The parameter cannot be parameterized with this value. Note: This fault does not result in a safety stop response. Fault value (r0949, decimal interpretation): Parameter number with the incorrect value. 9522: The gear stage was set too high. 9500: p9500 not equal to p9300 9511: p9511 not equal to p9311
Remedy:	Correct the parameter value. With hysteresis/filtering enabled (p9501.16 = 1), the following applies: - Set parameters p9546/p9346 and p9547/p9347 acc. to the following rule: p9546 >= $2 \times \mathrm{p} 9547$; p9346 >= $2 \times \mathrm{p} 9347$. For fault value = 9522: - Correct parameters.
F01682	SI Motion P1: Monitoring function not supported
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The monitoring function enabled in p9501, p9601 or p9801 is not supported in this firmware version. Note: This fault results in a STOP A that cannot be acknowledged. Fault value (r0949, decimal interpretation): 1: Monitoring function SLP not supported (p9501.1). 2: Monitoring function SCA not supported (p9501.7 and p9501.8 ... 15). 3: Monitoring function SLS override not supported (p9501.5). 4: Monitoring function external ESR activation not supported (p9501.4). 5: Monitoring function F-DI in PROFIsafe not supported (p9501.30). 6: Enable actual value synchronization not supported (p9501.3). 9: Monitoring function not supported, enable bit reserved (p9501.2, p9501.17 ... 29, p9501.31, if required p9501.6). 11: Only encoderless monitoring functions integrated in the drive are supported. 12: Safety Integrated for SINUMERIK is not supported on this Control Unit. 20: Motion monitoring functions integrated in the drive are only supported in conjunction with PROFIsafe (p9501/p9601.1 ... 2 and p9801.1 ... 2). 21: PROFIsafe only supported in conjunction with motion monitoring functions integrated in the drive (p9501/p9601.1 ... 2 and p9801.1 ... 2). 23: CU240 does not support monitoring functions requiring an encoder. 25: Drive-integrated motion monitoring functions not supported (p9501, p9601.2).
Remedy:	De-select the monitoring function involved (p9501, p9601, p9801). Note: SCA: Safe Cam SLP: Safely-Limited Position SLS: Safely-Limited Speed SDI: Safe Direction (safe motion direction) See also: p9501 (SI Motion enable safety functions (processor 1)), r9771 (SI common functions (processor 1))

F01683	SI Motion P1: SLS enable missing
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The safety-relevant function "SLS" is not enabled in p9501 although other safety-relevant monitoring functions are enabled. Note: This fault does not result in a safety stop response.
	Enable the function "SLS" (p9501.0) and carry out a POWER ON.
Remedy:	Note:
	SLS: Safely-Limited Speed
See also: p9501 (SI Motion enable safety functions (processor 1))	

A01696 (F)	SI Motion: Testing of the motion monitoring functions selected when booting
Reaction:	NONE
Acknowledge:	NONE
Cause:	The test of the motion monitoring functions was already illegally active when booting. This is the reason that the test is only carried out again after selecting the forced checking procedure parameterized in p9705. Note: This message does not result in a safety stop response. See also: p9705 (SI Motion: Test stop signal source)
Remedy:	De-select the forced checking procedure of the safety motion monitoring functions and then select again. The signal source for initiation is parameterized in binector input p9705. See also: p9705 (SI Motion: Test stop signal source)
A01697 (F)	SI Motion: Motion monitoring functions must be tested
Reaction:	NONE
Acknowledge:	NONE
Cause:	The time set in p9559 for the forced checking procedure of the safety motion monitoring functions has been exceeded. A new test is required. After next selecting the forced checking procedure parameterized in p9705, the message is withdrawn and the monitoring time is reset. Note: This message does not result in a safety stop response. As the shutdown paths are not automatically checked during booting, an alarm is always issued once booting is complete. See also: p9559 (SI Motion forced checking procedure timer (processor 1)), p9705 (SI Motion: Test stop signal source)
Remedy:	Carry out the forced checking procedure of the safety motion monitoring functions. The signal source for initiation is parameterized in binector input p9705. See also: p9705 (SI Motion: Test stop signal source)
A01698 (F)	SI P1: Commissioning mode active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The commissioning of the "Safety Integrated" function is selected. This message is withdrawn after the safety functions have been commissioned. Note: This message does not result in a safety stop response. See also: p0010 (Drive commissioning parameter filter)
Remedy:	Not necessary.
A01699 (F)	SI P1: Shutdown path must be tested
Reaction:	NONE
Acknowledge:	NONE
Cause:	The time set in p9659 for the forced checking procedure of the safety shutdown paths has been exceeded. The safety shutdown paths must be re-tested. After the next time the "STO" function is de-selected, the message is withdrawn and the monitoring time is reset. Note: This message does not result in a safety stop response. See also: p9659 (SI forced checking procedure timer)
Remedy:	Select STO and then de-select again. Note: STO: Safe Torque Off

C01700	SI Motion P1: STOP A initiated
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via a STOP A (pulses are suppressed via the safety shutdown path of processor 1).
	Possible causes:
	- stop request from processor 2.
	- Pulses not suppressed after test stop selection.
	- subsequent response to the message C01706 "SI Motion P1: SAM/SBR limit exceeded".
	- Subsequent response to the message C01714 "SI Motion P1: Safely-Limited Speed exceeded".
	- Subsequent response to the message Co1701 "SI Motion P1: STOP B initiated".
	- remove the cause of the fault on the monitoring channel of processor 2.
	- carry out a diagnostics routine for message CO1706.
	- carry out a diagnostics routine for message CO1714.
	- carry out a diagnostics routine for message Co1701.
	- check the shutdown path of processor 1.
	- replace Power Module.
	- replace Control Unit.
	This message can be acknowledged without a POWER ON as follows:
	- via F-DI or PROFIsafe.
	Note:
	F-DI: Failsafe Digital Input
	SAM: Safe Acceleration Monitor (safe acceleration monitoring)
	SBR: Safe Brake Ramp (safe brake ramp monitoring)

C01711

Reaction:
Acknowledge:
Cause:

SI Motion P1: Defect in a monitoring channel
NONE
IMMEDIATELY (POWER ON)
When cross-checking and comparing the two monitoring channels, the drive detected a difference between the input data or results of the monitoring functions and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e. safe operation is no longer possible.
If at least one monitoring function is active, then message C01701 "SI Motion: STOP B initiated" is output.
The message value that resulted in a STOP F is displayed in r9725. The message values described involve the crosswise data comparison between processor 1 and processor 2.
The following message values may also occur in the following cases if the cause that is explicitly mentioned does not apply:

- synchronization error between processor 1 and processor 2.

Message value (r2124, interpret decimal):
0 to 999: Number of the cross-checked data that resulted in this fault.
0 : Stop request from the other monitoring channel.
1: Status image of monitoring functions SLS or SAM/SBR (result list 1) (r9710[0], r9710[1]).
2: Status image of monitoring function $n<n x$ (result list 2) (r9711[0], r9711[1]).
3: The position actual value differential (r9713) between the two monitoring channels is greater than the tolerance in p9542/p9342.
4: Error when synchronizing the crosswise data comparison between the two channels.
5: Function enable signals (p9501/p9301)
6: Limit value for SLS1 (p9531[0]/p9331[0])
7: Limit value for SLS2 (p9531[1]/p9331[1])
8: Limit value for SLS3 (p9531[2]/p9331[2])
9: Limit value for SLS4 (p9531[3]/p9331[3])
31: Position tolerance (p9542/p9342).
42: Shutdown speed, pulse canc. (p9560/p9360)
43: Memory test, stop response (STOP A).
44 ... 57: General
Possible cause 1 (during commissioning or parameter modification)
The tolerance value for the monitoring function is not the same on the two monitoring
channels.
Possible cause 2 (during active operation)
The limit values are based on the current actual value (r9713). If the safe actual values on the two monitoring channels do not match, the limit values, which have been set at a defined interval, will also be different (i.e. corresponding to fault value 3). This can be ascertained by checking the safe actual positions.
44: Position actual value (r9713) + limit value for SLS1 (p9531[0]/p9331[0])
45: Position actual value (r9713) - limit value for SLS1 (p9531[0]/p9331[0])
46: Position actual value (r9713) + limit value for SLS2 (p9531[1]/p9331[1])
47: Position actual value (r9713) - limit value for SLS2 (p9531[1]/p9331[1])
48: Position actual value (r9713) + limit value for SLS3 (p9531[2]/p9331[2])
49: Position actual value (r9713) - limit value for SLS3 (p9531[2]/p9331[2])
50: Position actual value (r9713) + limit value for SLS4 (p9531[3]/p9331[3])
51: Position actual value (r9713) - limit value for SLS4 (p9531[3]/p9331[3])
54: Position actual value (r9713) + limit value $n x$ (p9546/p9346) + tolerance (p9542/p9342)
55: Position actual value (r9713) + limit value nx (p9546/p9346)
56: Position actual value (r9713) - limit value $n x$ (p9546/p9346)
57: Position actual value (r9713) - limit value nx (p9546/p9346) - tolerance (p9542/p9342)
58: Actual stop request.
75: Velocity limit nx (p9546, p9346).
76: Stop response for SLS1 (p9563[0]/p9363[0])
77: Stop response for SLS2 (p9563[1]/p9363[1])
78: Stop response for SLS3 (p9563[2]/p9363[2])
79: Stop response for SLS4 (p9563[3]/p9363[3])
81: Velocity tolerance for SAM (p9548/p9348)
83: Acceptance test timer (p9558/p9358)
230: Filter time constant for $\mathrm{n}<\mathrm{nx}$.
231: Hysteresis tolerance for $n<n x$.
232: Smoothed velocity actual value.
233: Smoothed velocity actual value + limit value $n x /$ safety monitoring clock cycle + hysteresis tolerance.
234: Smoothed velocity actual value + limit value $n x /$ safety monitoring clock cycle.
235: Smoothed velocity actual value - limit value $n x /$ safety monitoring clock cycle.
236: Smoothed velocity actual value - limit value $n x$ / safety monitoring clock cycle - hysteresis tolerance.
237: SGA n < nx.
238: Speed limit value for SAM (p9568/p9368).
239: Acceleration for SBR (p9581/p9381 and p9583/p9383).
240: Inverse value of acceleration for SBR (p9581/p9381 and p9583/p9383).
241: Deceleration time for SBR (p9582/p9382).
244: Encoderless actual value sensing filter time (p9587/p9387).

245: Encoderless actual value sensing minimum current (p9588/p9388).
246: Voltage tolerance acceleration (p9589/p9389).
247: SDI tolerance (p9564/p9364).
248: SDI positive upper limit (0x7fffffff).
249: Position actual value (r9713) - SDI tolerance.
250: Position actual value (r9713) + SDI tolerance.
251: SDI negative lower limit (0x80000001).
252: SDI stop response (p9566/p9366).
253: SDI delay time (p9565/p9365).
254: Setting, behavior during pulse suppression (p9509/p9309).
1000: Watchdog timer has expired. Too many signal changes have occurred at the F-DI.
1001: Initialization error of watchdog timer.
1005: Pulses already suppressed for test stop selection.
1011: Acceptance test status between the monitoring channels differ.
1020: Cyc. communication failure between the monit. cycles.
1041: Current absolute value too low (encoderless)
1042: Current/voltage plausibility error
1043: Too many acceleration phases
1044: Actual current values plausibility error.
6000 ... 6166:
PROFIsafe message values (PROFIsafe driver for PROFIBUS DP V1/V2 and PROFINET).
For these fault values, the failsafe control signals (failsafe values) are transferred to the safety functions.
6000: An internal software error has occurred (only for internal Siemens troubleshooting).
6064 ... 6071: Error when evaluating the F parameters. The values of the transferred F parameters do not match the expected values in the PROFIsafe driver.
6064: Destination address and PROFIsafe address are different (F_Dest_Add).
6065: Destination address not valid (F_Dest_Add).
6066: Source address not valid (F_Soūree_Add).
6067: Watchdog time not valid (F_WD_Time).
6068: Incorrect SIL level (F_SIL).
6069: Incorrect F-CRC length (F_CRC_Length).
6070: Incorrect F parameter version (F_Par_Version).
6071: CRC error for the F parameters (CRC1). The transferred CRC value of the F parameters does not match the value calculated in the PROFIsafe driver.
6072: F parameterization is inconsistent.
6165: A communications error was identified when receiving the PROFIsafe telegram. The fault may also occur if an inconsistent or out-of-date PROFIsafe telegram has been received after switching the Control Unit off and on or after plugging in the PROFIBUS/PROFINET cable.
6166: A time monitoring error (timeout) was identified when receiving the PROFIsafe telegram.
Message values that have not been listed are only for internal Siemens troubleshooting.
See also: r9725 (SI Motion, diagnostics STOP F)
Remedy:
Re message value $=0$:

- no error was identified in this monitoring channel. Note the error message of the other monitoring channel (for processor 2: C30711).
Re message value = 3:
Commissioning phase:
- check the setting of the gear parameters on both monitoring channels (p9521/p9321, p9522/p9322).
- check the numerator of the gear ratio to ensure that it takes into account the motor pole pair number (p9522/p9322). In operation:
- increase the ramp-function generator ramp-up/down time (p1120/p1121), reduce the dynamic performance of the drive.
Re message value = 1 ... 999:
- if the message value is listed under cause: Check the crosswise-compared parameters to which the message value refers.
- copy the safety parameters.
- carry out a POWER ON (power off/on).
- upgrade the Control Unit software.

Re message value = 1000:

- investigate the signal associated with the F-DI (contact problems).

Re message value =1001:

- carry out a POWER ON (power off/on).
- upgrade the Control Unit software.

Re message value $=1005$:

- check the conditions for pulse enable.

Re message value = 1011:

- for diagnostics, refer to parameter (r9571).

Re message value = 1020:

- carry out a POWER ON (power off/on).
- replace Control Unit.

Re message value $=1041$:

- reduce the minimum current (p9588).

Re message value $=1042$:

- increase the ramp-function generator ramp-up/down time (p1120/p1121).
- check that the current/speed control is set correctly (torque-generating/field-generating current and actual speed value may not fluctuate).
- reduce the dynamic response of the setpoint value.
- increase the minimum current (p9588).

Re message value = 1043:

- increase the voltage tolerance (p9589).
- increase the ramp-function generator ramp-up/down time (p1120/p1121).
- check that the current/speed control is set correctly (torque-generating/field-generating current and actual speed value may not fluctuate).
- reduce the dynamic response of the setpoint value.

Re message value $=6000$:

- carry out a POWER ON (power off/on).
- upgrade firmware to later version.
- contact the Hotline.
- replace Control Unit.

Re message value $=6064$:

- check the setting of the value in the F parameter F_Dest_Add at the PROFIsafe slave.
- check the setting of the PROFIsafe address on processor 1 (p9610) and on processor 2 (p9810).

Re message value $=6065$:

- check the setting of the value in the F parameter F_Dest_Add at the PROFIsafe slave. It is not permissible for the destination address to be either 0 or FFFF!
Re message value $=6066$:
- check the setting of the value in the F parameter F_Source_Add at the PROFIsafe slave. It is not permissible for the source address to be either 0 or FFFF!
Re message value $=6067$:
- check the setting of the value in the F parameter F_WD_Time at the PROFIsafe slave. It is not permissible for the watch time to be 0 !
Re message value $=6068$:
- check the setting of the value in the F parameter F_SIL at the PROFIsafe slave. The SIL level must correspond to SIL2!
Re message value $=6069$:
- check the setting of the value in the F parameter F_CRC_Length at the PROFIsafe slave. The setting of the CRC2 length is 2-byte CRC in the V1 mode and 3-byte CRC in the V2 mode!
Re message value $=6070$:
- check the setting of the value in the F parameter $\mathrm{F}_{\text {_Par_Version at the PROFIsafe slave. The value for the } \mathrm{F}}$ parameter version is 0 in the V 1 mode and 1 in the $\overline{\mathrm{V}} 2$ mode!
Re message value $=6071$:
- check the settings of the values of the F parameters and the F parameter CRC (CRC1) calculated from these at the PROFIsafe slave and, if required, update.
Re message value $=6072$:
- check the settings of the values for the F parameters and, if required, correct.

The following combinations are permissible for F parameters F_CRC_Length and F_Par_Version:
F_CRC_Length $=2$-byte CRC and F_Par_Version $=0$
F_CRC_Length $^{-} 3$-byte CRC and F_Par_Version $=1$
Re message value $=6165$:

- if the fault occurs after powering up or after inserting the PROFIBUS/PROFINET cable, acknowledge the fault.
- check the configuration and communication at the PROFIsafe slave.
- check the setting of the value for F parameter F_WD_Time on the PROFIsafe slave and increase if necessary.

Re message value $=6166$:

- check the configuration and communication at the PROFIsafe slave.
- check the setting of the value for F parameter F_WD_Time on the PROFIsafe slave and increase if necessary.
- evaluate diagnostic information in the F host.
- check PROFIsafe connection.

This message can be acknowledged as follows:

- motion monitoring functions integrated in the drive: via F-DI or PROFIsafe

C01712	
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When cross checking and comparing the two monitoring channels, the drive detected a difference between parameters or results of the F-IO processing and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e. safe operation is no longer possible. The safety message C01711 with message value 0 is also displayed due to initiation of STOP F. If at least one monitoring function is active, then safety message C01701 "SI Motion: STOP B initiated" is output. Message value (r2124, interpret decimal): Number of the cross-checked data that resulted in this message. 1: SI discrepancy monitoring time inputs (p10002, p10102). 2: SI acknowledgement internal event input terminal (p10006, p10106). 3: SI STO input terminal (p10022, p10122). 4: SI SS1 input terminal (p10023, p10123). 7: SI SLS input terminal (p10026, p10126). 13: Different states for static inactive signal sources (p10006, p10022 ... p10026). 14: SI discrepancy monitoring time outputs (p10002, p10102). 15: SI acknowledgment internal event (p10006, p10106). 46: SI digital inputs debounce time (p10017, p10117) 47: Selection F-DI for PROFIsafe (p10050, p10150) 48: Selection F-DI for PROFIsafe (p10050, p10150) 49: SI SDI positive input terminal (p10030, p10130). 50: SI SDI negative input terminal (p10031, p10131).
Remedy:	- check parameterization in the parameters involved and correct if required. - ensure equality by copying the SI data to processor 2 and then carry out an acceptance test. Note: This message can be acknowledged via F-DI or PROFIsafe. Note: F-DI: Failsafe Digital Input SLS: Safely-Limited Speed SS1: Safe Stop 1 STO: Safe Torque Off
C01714	SI Motion P1: Safely-Limited Speed exceeded
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive has moved faster than that specified by the velocity limit value (p9531). The drive is stopped as a result of the configured stop response (p9563). Message value (r2124, interpret decimal): 100: SLS1 exceeded. 200: SLS2 exceeded. 300: SLS3 exceeded. 400: SLS4 exceeded.
Remedy:	- check the traversing/motion program in the control. - check the limits for "Safely-Limited Speed (SLS) and if required, adapt (p9531). This message can be acknowledged as follows: - via F-DI or PROFIsafe. Note: SLS: Safely-Limited Speed See also: p9531 (SI Motion SLS limit values (processor 1)), p9563 (SI Motion SLS-specific stop response (processor 1))

C01716	SI Motion P1: Tolerance for safe motion direction exceeded
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The tolerance for the "safe motion direction" function was exceeded. The drive is stopped as a result of the
	configured stop response (p9566).
	Message value (r9749, interpret decimal):
0: Tolerance for the "safe motion direction positive" function exceeded.	
	1: Tolerance for the "safe motion direction positive negative" function exceeded.
Remedy:	- check the traversing/motion program in the control.
	- check the tolerance for "SDI" function and if required, adapt (p9564).
	This message can be acknowledged as follows:
	Via F-DI or PROFIsafe
	Note:
	SDI: Safe Direction (safe motion direction)
	SI: Safety Integrated
	See also: p9564 (SI Motion SDI tolerance (processor 1)), p9565 (SI Motion SDI delay time (processor 1)), p9566 (SI
	Motion SDI stop response (processor 1))

C01798	SI Motion P1: Test stop running
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The test stop is active.
Remedy:	Not necessary.
	The message is withdrawn when the test stop is finished.
C01799	SI Motion P1: Acceptance test mode active
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The acceptance test mode is active.
Remedy:	Not necessary.
	The message is withdrawn when exiting the acceptance test mode.
A01900 (F)	PROFIBUS: Configuration telegram error
Reaction:	NONE
Acknowledge:	NONE
Cause:	A PROFIBUS master attempts to establish a connection using an incorrect configuring telegram. Alarm value (r2124, interpret decimal):
	2: Too many PZD data words for output or input. The number of possible PZD is specified by the number of indices in r2050/p2051.
	3: Uneven number of bytes for input or output.
	501: PROFIsafe parameter error (e.g. F_dest).
	502: PROFIsafe telegram does not match.
Remedy:	Check the bus configuration on the master and slave sides.
	Re alarm value $=2$:
	Check the number of data words for output and input.
	Re alarm value = 501:
	Check the set PROFIsafe address (p9610).
	Re alarm value $=502$:
	Check the enable signal F-DI (p9501.30).
F01910 (N, A)	Fieldbus interface setpoint timeout
Reaction:	OFF3 (IASC/DCBRAKE, NONE, OFF1, OFF2, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The reception of setpoints from the fieldbus interface has been interrupted.
	- bus connection interrupted.
	- communication partner switched off.
	For PROFIBUS:
	- PROFIBUS master set into the STOP state.
	See also: p2040 (Fieldbus interface monitoring time), p2047 (PROFIBUS additional monitoring time)
Remedy:	Ensure bus connection has been established and switch on communication peer. - if required, adapt p2040.
	For PROFIBUS:
	- set the PROFIBUS master to the RUN state.
	- slave redundancy: For operation on a Y link, it must be ensured that "DP alarm mode = DPV1" is set in the slave parameterization.
	See also: p2040 (Fieldbus interface monitoring time), p2047 (PROFIBUS additional monitoring time)

A01920 (F)	PROFIBUS: Interruption cyclic connection
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cyclic connection to the PROFIBUS master is interrupted.
Remedy:	Establish the PROFIBUS connection and activate the PROFIBUS master in the cyclic mode.

A01945	PROFIBUS: Connection to the Publisher failed
Reaction:	NONE
Acknowledge:	NONE
Cause:	For PROFIBUS peer-to-peer data transfer, the connection to at least one Publisher has failed. Alarm value (r2124, binary interpretation): Bit $0=1$: Publisher with address in r2077[0], connection failed.
	Bit 15 = 1: Publisher with address in r2077[15], connection failed.
Remedy:	Check the PROFIBUS cables. See also: r2077 (PROFIBUS diagnostics peer-to-peer data transfer addresses)
F01946 (A)	PROFIBUS: Connection to the Publisher aborted
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The connection to at least one Publisher for PROFIBUS peer-to-peer data transfer in cyclic operation has been aborted. Fault value (r0949, interpret binary): Bit $0=1$: Publisher with address in r2077[0], connection aborted. ... Bit $15=1$: Publisher with address in r 2077 [15], connection aborted.
Remedy:	- check the PROFIBUS cables. - check the state of the Publisher that has the aborted connection. See also: r2077 (PROFIBUS diagnostics peer-to-peer data transfer addresses)
F01951	CU SYNC: Synchronization application clock cycle missing
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Internal synchronization of the application cycles unsuccessful. Fault value (r0949, decimal interpretation): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade the Control Unit software.
A01953	CU SYNC: Synchronization not completed
Reaction:	NONE
Acknowledge:	NONE
Cause:	After the drive system was powered up, synchronization between the basic clock cycle and application clock cycle was started but was not completed within the selected time tolerance. Alarm value (r2124, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	Carry out a POWER ON (power off/on).
F02080	Trace: Parameterization deleted due to unit changeover
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The trace parameterization in the drive unit was deleted due to a unit changeover or a change in the reference parameters.
Remedy:	Restart trace.
A02150	OA: Application cannot be loaded
Reaction:	NONE
Acknowledge:	NONE
Cause:	The system was not able to load an OA application. Alarm value (r2124, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline. Note: OA: Open Architecture

F02151 (A)	OA: Internal software error
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal software error has occurred within an OA application. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline. - replace the Control Unit. Note: OA: Open Architecture
F02152 (A)	OA: Insufficient memory
Reaction:	OFF1
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Too many functions have been configured on this Control Unit (e.g. too many drives, function modules, data sets, OA applications, blocks, etc). Fault value (r0949, decimal interpretation): Only for internal Siemens troubleshooting.
Remedy:	- change the configuration on this Control Unit (e.g. fewer drives, function modules, data sets, OA applications, blocks, etc). - use an additional Control Unit. Note: OA: Open Architecture
F03000	NVRAM fault on action
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault occurred during execution of action $p 7770=1,2$ for the NVRAM data. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ fault cause, $x x=$ application ID yy = 1 : The action $\mathrm{p} 7770=1$ is not supported by this version if Drive Control Chart (DCC) is activated for the drive object concerned. yy = 2: The data length of the specified application is not the same in the NVRAM and the backup. yy = 3: The data checksum in p7774 is not correct. $y y=4:$ No data available to load.
Remedy:	Perform the remedy according to the results of the troubleshooting. If necessary, start the action again.
F03001	NVRAM checksum incorrect
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A checksum error occurred when evaluating the non-volatile data (NVRAM) on the Control Unit. The NVRAM data affected was deleted.
Remedy:	POWER ON all components (switch the power off and then back on again).

F03505 (N, A)	CU: Analog input wire breakage
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The input current of the analog input has undershot the threshold value parameterized in p0761[0...3]. This fault only occurs when $p 0756[0 \ldots 1]=1(2 \ldots 10 \mathrm{~V}$ with monitoring) or p0756[0...2] = 3 ($4 \ldots 20 \mathrm{~mA}$ with monitoring) is set. p0756[0]: Analog input 0 p0756[1]: Analog input 1 p0756[2]: Analog input 2 Fault value (r0949, decimal interpretation): The component number (p 0151) of the component involved is specified at the units, tens and hundreds digit. The thousands digit specifies the relevant analog input: 0: analog input 0 (AI 0), 1: analog input 1 (AI 1), 2: analog input 2 (Al 2)
Remedy:	Check the connection to the signal source for interruptions. Check the magnitude of the injected current - it is possible that the infed signal is too low. The input current measured by the analog input can be read in $\mathrm{r} 0752[\mathrm{x}]$.

A03510 (F, N)	CU: Calibration data not plausible
Reaction:	NONE
Acknowledge:	NONE
Cause:	During booting, the calibration data for the analog inputs is read and checked with respect to plausibility. At least one calibration data point was determined to be invalid.
Remedy:	- power down/power up the power supply for the Control Unit. If it reoccurs, replace the module. In principle, operation could continue.
	The analog channel involved possibly does not achieve the specified accuracy.

A05000 (N)	Power unit: Overtemperature heat sink AC inverter
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for overtemperature at the inverter heat sink has been reached. The response is set using p0290. If the temperature of the heat sink increases by an additional 5 K, then fault F30004 is initiated.
Remedy:	Check the following: - is the ambient temperature within the defined limit values? - have the load conditions and the load duty cycle been appropriately dimensioned? \quad- has the cooling failed?

A05001 (N) Power unit: Overtemperature depletion layer chip
Reaction: NONE
Acknowledge: NONE
Cause: Alarm threshold for overtemperature of the power semiconductor in the AC converter has been reached.
Note:
- The response is set using p0290.
- If the depletion layer temperature increases by an additional 15 K , then fault F30025 is triggered.
Remedy: Check the following:
- is the ambient temperature within the defined limit values?
- have the load conditions and the load duty cycle been appropriately dimensioned?
- has the cooling failed?
- pulse frequency too high?
See also: r0037 (Power unit temperatures), p0290 (Power unit overload response)

A05002 (N)	Power unit: Air intake overtemperature
Reaction:	NONE
Acknowledge:	NONE
Cause:	For chassis power units, the following applies: The alarm threshold for the air intake overtemperature has been reached. For air-cooled power units, the threshold is $42^{\circ} \mathrm{C}$ (hysteresis 2 K$)$. The response is set using p0290. If the air intake temperature increases by an additional 13 K, then fault F30035 is output. Check the following:
Remedy:	- is the ambient temperature within the defined limit values? - has the fan failed? Check the direction of rotation.

A05004 (N)	Power unit: Rectifier overtemperature
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for the overtemperature of the rectifier has been reached. The response is set using p0290. If the temperature of the rectifier increases by an additional 5 K, then fault F30037 is triggered. Remedy:
	Check the following: - is the ambient temperature within the defined limit values? - have the load conditions and the load duty cycle been appropriately dimensioned? - has the fan failed? Check the direction of rotation. - has a phase of the line supply failed? - is an arm of the supply (incoming) rectifier defective?

A05006 (N)	Power unit: Overtemperature thermal model
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature difference between the chip and heat sink has exceeded the permissible limit value (blocksize
	power units only).
	Depending on p0290, an appropriate overload response is initiated.
	See also: r0037 (Power unit temperatures)
Remedy:	Not necessary.
	The alarm disappears automatically once the limit value is undershot.
	Note:
	If the alarm does not disappear automatically and the temperature continues to rise, this can result in fault F30024.
	See also: p0290 (Power unit overload response)

F06310 (A) Supply voltage (p0210) incorrectly parameterized
Reaction: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)

Cause: The measured DC voltage lies outside the tolerance range after pre-charging has been completed: 1.16 * p0210 < r0070 < 1.6 * p0210.
The fault can only be acknowledged when the drive is powered down. See also: p0210 (Drive unit line supply voltage)
Remedy: - check the parameterized supply voltage and if required change (p0210).

- check the line supply voltage.

See also: p0210 (Drive unit line supply voltage)
A06921 (N) Braking resistor phase unsymmetry
Reaction: NONE

Acknowledge: NONE
Cause: The three resistors of the braking chopper are not symmetrical.
Remedy: - check the feeder cables to the braking resistors.

- increase p1364.

F06922	Braking resistor phase failure
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Phase failure of a braking resistor detected.
	Fault values:
	11 = phase U
	$12=$ phase V
	13 = phase W
	See also: p3235 (Phase failure signal motor monitoring time)
Remedy:	Check the feeder cables to the braking resistors.
F07011	Drive: Motor overtemperature
Reaction:	OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	KTY:
	The motor temperature has exceeded the fault threshold (p0605) or the timer (p0606) after the alarm threshold was exceeded (p0604) has expired. The response parameterized in p0610 becomes active. The alarm is withdrawn if the response threshold for wire breakage or sensor not connected is exceeded ($R>2120$ Ohm). PTC or bimetallic NC contact:
	The response threshold of 1650 Ohm was exceeded or the NC contact opened and the timer (p0606) has expired. The response parameterized in p0610 becomes active.
	Possible causes:
	- Motor is overloaded
	- motor ambient temperature too high.
	- Wire break or sensor not connected
	Fault value (r0949, decimal interpretation):
	200: The 12t motor model signals an overtemperature ($\mathrm{p} 0612.0=1, \mathrm{p} 0611>0$).
	See also: p0604 (Motor temperature alarm threshold), p0605 (Motor temperature fault threshold), p0606 (Motor temperature timer), p0610 (Motor overtemperature response)
Remedy:	- Reduce the motor load. - check the ambient temperature and the motor ventilation. - check the wiring and the connection of the PTC or bimetallic NC contact. See also: p0604 (Motor temperature alarm threshold), p0605 (Motor temperature fault threshold), p0606 (Motor temperature timer)
A07012 (N)	Drive: I2t motor model overtemperature
Reaction:	NONE
Acknowledge:	NONE
Cause:	The thermal 12 t motor model (for synchronous motors) identified that the temperature alarm threshold was exceeded. See also: r0034 (Motor utilization), p0605 (Motor temperature fault threshold), p0611 (I2t motor model thermal time constant)
Remedy:	- check the motor load and if required, reduce. - check the motor ambient temperature. - check the thermal time constant p0611. - check the overtemperature fault threshold p0605 (= alarm threshold for the I2t motor model, see p0612)

$\overline{\text { A07015 }}$	Drive: Motor temperature sensor alarm
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error was detected when evaluating the temperature sensor set in p0601. With the fault, the time in p0607 is started. If the fault is still present after this time has expired, then fault F07016 is output; however, at the earliest, 50 ms after alarm A07015. Possible causes: - wire breakage or sensor not connected (KTY: R > 2120 Ohm). - measured resistance too low (PTC: $\mathrm{R}<20$ Ohm, KTY: $\mathrm{R}<50$ Ohm).
Remedy:	- make sure that the sensor is connected correctly. - check the parameterization (p0601). See also: r0035 (Motor temperature), p0601 (Motor temperature sensor type), p0607 (Temperature sensor fault timer)

F07016	Drive: Motor temperature sensor fault
Reaction:	OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	An error was detected when evaluating the temperature sensor set in p0601. Possible causes: - wire breakage or sensor not connected (KTY: R > 2120 Ohm). - measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm). Note: If alarm A07015 is present, the time in p0607 is started. If the fault is still present after this time has expired, then fault F07016 is output; however, at the earliest, 50 ms after alarm A07015. See also: p0607 (Temperature sensor fault timer)
Remedy:	- make sure that the sensor is connected correctly. - check the parameterization (p0601). - induction motors: De-activate temperature sensor fault ($p 0607=0$). See also: r0035 (Motor temperature), p0601 (Motor temperature sensor type), p0607 (Temperature sensor fault timer)
F07080	Drive: Incorrect control parameter
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The closed-loop control parameters have been parameterized incorrectly (e.g. p0356 = L_spread = 0). Fault value (r0949, decimal interpretation): The fault value includes the parameter number involved. The following parameter numbers only occur as fault values for vector drives: p0310, for synchronous motors: p0341, p0344, p0350, p0357 The following parameter numbers do not occur as fault values for synchronous motors: p0354, p0358, p0360 See also: p0310, p0311, p0341, p0344, p0350, p0354, p0356, p0357, p0358, p0360, p0640, p1082, p1300
Remedy:	Modify the parameter indicated in the fault value (r0949) (e.g. p0640 = current limit >0). See also: p0311, p0341, p0344, p0350, p0354, p0356, p0358, p0360, p0640, p1082
F07082	Macro: Execution not possible
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The macro cannot be executed. Fault value (r0949, interpret hexadecimal): ccccbbaa hex: cccc $=$ preliminary parameter number, $\mathrm{bb}=$ supplementary information, $\mathrm{aa}=$ fault cause Fault causes for the trigger parameter itself: 19: Called file is not valid for the trigger parameter. 20: Called file is not valid for parameter 15. 21: Called file is not valid for parameter 700. 22: Called file is not valid for parameter 1000. 23: Called file is not valid for parameter 1500. 24: Data type of a TAG is incorrect (e.g. Index, number or bit is not U16). Fault causes for the parameters to be set: 25: Error level has an undefined value. 26: Mode has an undefined value. 27: A value was entered as string in the tag value that is not "DEFAULT". 31: Entered drive object type unknown. 32: A device was not able to be found for the determined drive object number. 34: A trigger parameter was recursively called. 35: It is not permissible to write to the parameter via macro. 36: Check, writing to a parameter unsuccessful, parameter can only be read, not available, incorrect data type, value range or assignment incorrect. 37: Source parameter for a BICO interconnection was not able to be determined. 38: An index was set for a non-indexed (or CDS-dependent) parameter. 39: No index was set for an indexed parameter. 41: A bit operation is only permissible for parameters with the parameter format DISPLAY_BIN. 42: A value not equal to 0 or 1 was set for a BitOperation. 43: Reading the parameter to be changed by the BitOperation was unsuccessful. 51: Factory setting for DEVICE may only be executed on the DEVICE. 61: The setting of a value was unsuccessful.
Remedy:	- check the parameter involved. - check the macro file and BICO interconnection. See also: p0015, p0700, p1000, p1500

F07083	Macro: ACX file not found
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The ACX file (macro) to be executed was not able to be found in the appropriate directory. Fault value (r0949, decimal interpretation): Parameter number with which the execution was started. See also: p0015, p0700, p1000, p1500
Remedy:	- check whether the file is saved in the appropriate directory on the memory card.
F07084	Macro: Condition for WaitUntil not fulfilled
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The WaitUntil condition set in the macro was not fulfilled in a certain number of attempts. Fault value (r0949, decimal interpretation): Parameter number for which the condition was set.
Remedy:	Check and correct the conditions for the WaitUntil loop.
F07086	Units changeover: Parameter limit violation due to reference value change
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A reference parameter was changed in the system. This resulted in the fact that for the parameters involved, the selected value was not able to be written in the per unit representation (cause: e.g. the steady-state minimum/maximum limit or that defined in the application was violated). The values of the parameters were set to the corresponding violated minimum/maximum limit or to the factory setting. Fault value (r0949, parameter): Diagnostics parameter r9450 to display the parameters that were not able to be re-calculated. See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004
Remedy:	Check the adapted parameter value and if required correct.
F07088	Units changeover: Parameter limit violation due to units changeover
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A changeover of units was initiated. Possible causes for the violation of a parameter limit are: - when rounding off a parameter corresponding to its decimal places, the steady-state minimum or maximum limit was violated. - inaccuracies for the data type "FloatingPoint". In these cases, when the minimum limit is violated then the parameter value is rounded up and when the maximum limited is violated the parameter value is rounded down. Fault value (r0949, decimal interpretation): Diagnostics parameter r9451 to display all parameters whose value had to be adapted. See also: p0100 (IEC/NEMA mot stds), p0505 (Selecting the system of units), p0595 (Selecting technological units)
Remedy:	Check the adapted parameter values and if required correct. See also: r9451 (Units changeover adapted parameters)
A07089	Changing over units: Function module activation is blocked because the units have been changed over
Reaction:	NONE
Acknowledge:	NONE
Cause:	An attempt was made to activate a function module. This is not permissible if the units have already been changed over. See also: p0100 (IEC/NEMA mot stds), p0505 (Selecting the system of units)
Remedy:	Restore units that have been changed over to the factory setting.

A07200	Drive: Master control ON command present		
Reaction:	NONE		
Acknowledge:	NONE		
Cause:	The ON/1 command is present (no 0 signal). The command is either influenced via binector input p0840 (current CDS) or control word bit 0 via the master control. Switch the signal via binector input p0840 (aktueller CDS) or control word bit 0 via the master control to 0.		
Remedy:	Drive: Master control by PLC missing F07220 (N, A) Reaction:		
OFF1 (NONE, OFF2, OFF3, STOP2)			
Cause:	IMMEDIATELY		
The "master control by PLC" signal was missing in operation.		\quad	- interconnection of the binector input for "master control by PLC" is incorrect (p0854).
:---			
- the higher-level control has withdrawn the "master control by PLC" signal.			
- data transfer via the fieldbus (master/drive) was interrupted.			

F07320	Drive: Automatic restart interrupted
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	- The specified number of restart attempts (p1211) has been completely used up because within the monitoring time
	(p1213) the faults were not able to be acknowledged. The number of restart attempts (p1211) is decremented at each
new start attempt.	
	- there is no active ON command.
	- the monitoring time for the power unit has expired (p0857).
	- when exiting commissioning or at the end of the motor identification routine or the speed controller optimization, the
drive unit is not automatically powered up again.	
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- increase the number of restart attempts (p1211). The actual number of starting attempts is displayed in r1214.
	- increase the delay time in p1212 and/or the monitoring time in p1213.
- issue an ON command (p0840).	
	- either increase or disable the monitoring time of the power unit (p0857).
- Reduce the delay time for resetting the start counter p1213[1] so that fewer faults are registered in the time interval.	

A07321	Drive: Automatic restart active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The automatic restart (AR) is active. When the line supply returns and/or the causes of the existing faults are removed the drive is automatically restarted. The pulses are enabled and the motor starts to rotate. For p1210 $=26$ the alarm atter the line supply returs is also displayed if there is no fault and there is no ON command. Restarting is realized with the delayed setting of the ON command. Remedy:\quad- the automatic restart (AR) should, if required, be inhibited (p1210 $=0$). - an automatic restart can be directly interrupted by withdrawing the power-on command (BI: p0840). - for p1210 $=26:$ by withdrawing the OFF2-/ OFF3 control commands.

F07330	Flying restart: Measured search current too low
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	During a flying restart, it was identified that the search current reached is too low. It is possible that the motor is not connected.
Remedy:	Check the motor feeder cables.

F07331	Flying restart: Function not supported
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	It is not possible to power up with the motor rotating (no flying restart). In the following cases, the "flying restart" function is not supported:
Pemedy:	Perm.-magnet synch. mortors (PEM): operation with U/f char. and sensorless vector control. Cancel the "flying restart" function (p1200 $=0)$.

A07400 (N)	Drive: DC link voltage maximum controller active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage controller has been activated because the upper switch-in threshold has been exceeded (r1242,
	r1282).
	The ramp-down times are automatically increased in order to maintain the DC link voltage (r0070) within the
permissible limits. There is a system deviation between the setpoint and actual speeds.	
	When the DC link voltage controller is switched out (disabled), this is the reason that the ramp-function generator output is set to the speed actual value. See also: r0056 (Status word, closed-loop control), p1240 (Vdc controller or Vdc monitoring configuration (vector control)), p1280 (Vdc controller or Vdc monitoring configuration (U/f)) If the controller is not to intervene:
Remedy:	- increase the ramp-down times.
	- switch-off the Vdc_max controller (p1240 = 0 for vector control, p1280 = 0 for U/f control).
If the ramp-down times are not to be changed:	
	- use a chopper or regenerative feedback unit.

A07401 (N)	Drive: DC link voltage maximum controller de-activated
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Vdc_max controller can no longer maintain the DC link voltage (r0070) below the limit value (r1242, r1282) and was therefore switched out (disabled). - the line supply voltage is permanently higher than specified for the power unit. - the motor is permanently in the regenerative mode as a result of a load that is driving the motor.
Remedy:	- check whether the input voltage is within the permissible range. - check whether the load duty cycle and load limits are within the permissible limits.

A07402 (N)	Drive: DC link voltage minimum controller active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage controller has been activated as the lower switch-in threshold has been undershot (r1246,
	r1286).
	The kinetic energy of the motor is used to buffer the DC link. The drive is therefore braked. See also: r0056 (Status word, closed-loop control), p1240 (Vdc controller or Vdc monitoring configuration (vector control)), p1280 (Vdc controller or Vdc monitoring configuration (U/f))
Remedy:	The alarm disappears when power supply returns.

F07405 (N, A) Drive: Kinetic buffering minimum speed not reached
Reaction: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP2)

Acknowledge: IMMEDIATELY
Cause: During kinetic buffering the speed fell below minimum speed (p1257 or p1297 for vector drives with U/f control) and the line supply did not return.
Remedy: Check the speed threshold for the Vdc_min controller (kinetic buffering) (p1257, p1297).
See also: p1257 (Vdc_min controller speed threshold), p1297 (Vdc_min controller speed threshold (U/f))

F07406 (N, A)	Drive: Kinetic buffering maximum time exceeded
Reaction:	OFF3 (IASC/DCBRAKE, NONE, OFF1, OFF2, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The maximum buffer time (p1255 and p1295 for vector drives with U/f control) has been exceeded without the line supply having returned.
Remedy:	Check the time threshold for Vdc-min controller (kinetic buffering) (p1255, p1295). See also: p1255 (Vdc_min controller time threshold), p1295 (Vdc_min controller time threshold (U/f))
A07409	Drive: U/f control, current limiting controller active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The current limiting controller of the U/f control was activated because the current limit was exceeded.
Remedy:	The alarm automatically disappears after one of the following measures: - increase current limit (p0640). - reduce the load. - slow down the ramp up to the setpoint speed.
F07410	Drive: Current controller output limited
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	The condition "I_act = 0 and Uq_set_1 longer than 16 ms at its limit" is present and can be caused by the following: - motor not connected or motor contactor open. - motor data and motor configuration (star-delta) do not match. - no DC link voltage present. - power unit defective. - the "flying restart" function is not activated.
Remedy:	- connect the motor or check the motor contactor. - check the motor parameterization and the connection type (star-delta). - check the DC link voltage (r0070). - check the power unit. - activate the "flying restart" function (p1200).
F07411	Drive: Flux controller output limited
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	When quick magnetizing is configured (p1401.6 = 1) the specified flux setpoint is not reached although 90% of the maximum current is specified. - incorrect motor data. - motor data and motor configuration (star-delta) do not match. - the current limit has been set too low for the motor. - induction motor (encoderless, open-loop controlled) in I2t limiting. - power unit is too small. - the magnetizing time is too short.
Remedy:	- correct the motor data. Perform motor data identification and rotating measurement. - check the motor configuration. - correct the current limits (p0640). - reduce the induction motor load. - if necessary, use a larger power unit. - check motor supply cable. - check power unit. - increase p0346.

A07416	Drive: Flux controller configuration
Reaction:	NONE
Acknowledge:	NONE
Cause:	```The configuration of the flux control (p 1401) is contradictory. Alarm value (r2124, interpret hexadecimal): ccbbaaaa hex aaaa \(=\) Parameter \(\mathrm{bb}=\) Index cc = fault cause 1: Quick magnetizing (p1401.6) for soft starting (p1401.0). 3: Quick magnetizing (p1401.6) for Rs identification after restart (p0621 = 2)```
Remedy:	Re fault cause $=1$: - Shut down soft start (p1401.0 = 0). - Shut down quick magnetizing (p1401.6 = 0). Re fault cause $=3$: - Re-parameterize Rs identification (p0621 = 0, 1) - Shut down quick magnetizing (p1401.6 = 0).

F07426 (A)	Technology controller actual value limited
Reaction:	OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The actual value for the technology controller, interconnected via connector input p2264, has reached a limit. Fault value (ro949, decimal interpretation): 1: upper limit reached. 2: lower limit reached.
Remedy:	- adapt the limits to the signal level (p2267, p2268). - check the scaling of the actual value (p2264). See also: p2264 (Technology controller actual value), p2267 (Technology controller upper limit actual value), p2268 (Technology controller lower limit actual value)

F07435 (N)	Drive: Setting the ramp-function generator for sensorless vector control
Reaction:	OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	During operation with sensorless vector control (r1407.1) the ramp-function generator was stopped (p1141). An internal setting command of the ramp-function generator output caused the set setpoint speed to be frozen.
Remedy:	- de-activate the holding command for the ramp-function generator (p1141). - suppress the fault (p2101, p2119). This is necessary if the ramp-function generator is held using jogging and the speed setpoint is simultaneously inhibited (ro898.6).

F07439	Drive: Higher current controller dynamic performance not possible
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The function "Current controller dynamics higher" (p1810.11 = 1) is selected, however is not supported by the power unit ($\mathrm{r} 0192.27=0$) or by the safety technology without encoder $(9506=1)$. Fault value (r0949, decimal interpretation): 1: - firmware of the booksize power unit is not up-to-date. - blocksize or S120 combi power unit was used. 2: - a sine-cosine encoder with encoderless safety technology is used.
Remedy:	In general: - Deselect the function "Current controller dynamics higher" (p1810.11 = 0) and if required, set the current, speed and position controller again or calculate (p0340 = 4). For fault value = 1 : - If necessary, upgrade the firmware of the booksize power unit to a later version (version >=4.4). - Use a booksize power unit (version >= 4.4). For fault value = 2: - Re-parameterize encoderless safety technology (9506 = 1) to safety technology with an encoder (p9506 = 0). See also: p1810 (Modulator configuration), p9506 (SI Motion function specification (processor 1))

A07530	Drive: Drive Data Set DDS not present
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected drive data set is not available ($\mathrm{p} 0837>\mathrm{p} 0180$). The drive data set was not changed over. See also: p0180 (Number of Drive Data Sets (DDS)), p0820 (Drive Data Set selection DDS bit 0), p0821 (Drive Data Set selection DDS bit 1), r0837 (Drive Data Set DDS selected)
Remedy:	- select the existing drive data set. - set up additional drive data sets.
A07531	Drive: Command Data Set CDS not present
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected command data set is not available ($\mathrm{p} 0836>\mathrm{p} 0170$). The command data set was not changed over. See also: p0810 (Command data set selection CDS bit 0), p0811 (Command data set selection CDS bit 1), r0836 (Command Data Set CDS selected)
Remedy:	- select the existing command data set. - set up additional command data sets.
F07800	Drive: No power unit present
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The power unit parameters cannot be read or no parameters are stored in the power unit. Connection between Control Unit and power unit was interrupted or is defective. Note: This fault also occurs if an incorrect topology was selected in the commissioning software and this parameterization is then downloaded to the Control Unit. See also: r0200 (Power unit code number actual)
Remedy:	- connect the data line to power unit and restart the CU (POWER ON). - check or replace the CU. - Check the cable between the CU and power unit. - after correcting the topology, the parameters must be again downloaded using the commissioning software.
F07801	Drive: Motor overcurrent
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The permissible motor limit current was exceeded. - effective current limit set too low. - current controller not correctly set. - U/f operation: Up ramp was set too short or the load is too high. - U/f operation: Short-circuit in the motor cable or ground fault. - U/f operation: Motor current does not match current of power unit. - Switch to rotating motor without flying restart function (p1200). Note: Limit current $=2 \times$ minimum (p0640, $4 \times p 0305 \times p 0306)>=2 \times p 0305 \times p 0306$
Remedy:	- check the current limits (p0640). - vector control: Check the current controller (p1715, p1717). - U/f control: Check the current limiting controller (p1340 ... p1346). - increase the up ramp (p1120) or reduce the load. - check the motor and motor cables for short-circuit and ground fault. - check the motor for the star-delta configuration and rating plate parameterization. - check the power unit and motor combination. - Choose "flying restart" function (p1200) if switched to rotating motor.

F07802	Drive: Infeed or power unit not ready
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	After an internal power-on command, the infeed or drive does not signal ready. - monitoring time is too short. - DC link voltage is not present. - associated infeed or drive of the signaling component is defective. - supply voltage incorrectly set.
Remedy:	- increase the monitoring time (p0857). - ensure that there is a DC link voltage. Check the DC link busbar. Enable the infeed. - replace the associated infeed or drive of the signaling component. - check the line supply voltage setting (p0210). See also: p0857 (Power unit monitoring time)

A07805 (N)	Drive: Power unit overload I2t
Reaction:	NONE
Acknowledge:	NONE
Cause:	Alarm threshold for 12t overload (p0294) of the power unit exceeded. The response parameterized in p0290 becomes active. See also: p0290 (Power unit overload response)
Remedy:	- reduce the continuous load. - adapt the load duty cycle. - check the assignment of the motor and power unit rated currents.

F07806	Drive: Regenerative power limit exceeded (F3E)
Reaction:	OFF2 (IASC/DCBRAKE)
Acknowledge:	IMMEDIATELY
Cause:	For blocksize power units, types PM250 and PM260, the regenerative rated power r0206[2] was exceeded for more than 10 s.
Remedy:	See also: r0206 (Rated power unit power), p1531 (Power limit regenerative) - increase the down ramp.
	- reduce the driving load. - use a power unit with a higher regenerative feedback capability. - for vector control, the regenerative power limit in p1531 can be reduced so that the fault is no longer triggered.

F07807	Drive: Short-circuit detected
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	A phase-phase short-circuit was detected at the motor-side output terminals of the converter. Neme:e
Also when interchanging the line and motor cables is identified as a motor-side short circuit.	
	- check the motor-side converter connection for a phase-phase short-circuit. - rule-out interchanged line and motor cables.

F07808 (A)	HF damping module: damping not ready
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY

A07850 (F)	External alarm 1
Reaction:	NONE
Acknowledge:	NONE
Cause:	The BICO signal for "external alarm 1" was triggered.
	The condition for this external alarm is fulfilled.
	See also: p2112 (External alarm 1)
Remedy:	Eliminate the causes of this alarm.

A07851 (F)	External alarm 2
Reaction:	NONE
Acknowledge:	NONE
Cause:	The BICO signal for "external alarm 2" was triggered.
	The condition for this external alarm is fulfilled.
	See also: p2116 (External alarm 2)
Remedy:	Eliminate the causes of this alarm.

A07852 (F)	External alarm 3
Reaction:	NONE
Acknowledge:	NONE
Cause:	The BICO signal for "external alarm 3" was triggered.
	The condition for this external alarm is fulfilled. See also: p2117 (External alarm 3)
Remedy:	Eliminate the causes of this alarm.
F07860 (A)	External fault 1
Reaction:	OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The BICO signal "external fault 1" was triggered.
Remedy:	See also: p2106 (External fault 1)
	Eliminate the causes of this fault.

F07861 (A)	External fault 2
Reaction:	OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The BICO signal "external fault 2" was triggered. See also: p2107 (External fault 2)
Remedy:	Eliminate the causes of this fault.
F07862 (A)	External fault 3
Reaction:	OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The BICO signal "external fault 3" was triggered. See also: p2108 (External fault 3), p3111 (External fault 3, enable), p3112 (External fault 3 enable negated)
Remedy:	Eliminate the causes of this fault.
F07900 (N, A)	Drive: Motor blocked
Reaction:	OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	Motor has been operating at the torque limit longer than the time specified in p2177 and below the speed threshold set in p2175. This signal can also be triggered if the speed is oscillating and the speed controller output repeatedly goes to its limit. It may also be the case that thermal monitoring of the power unit reduces the current limit (see p0290), thereby causing the motor to decelerate. See also: p2175 (Motor locked speed threshold), p2177 (Motor locked delay time)
Remedy:	- check that the motor can rotate freely. - check the torque limit: For a positive direction of rotation r1538, for a negative direction of rotation r1539. - check the parameter, message "Motor locked" and if required, correct (p2175, p2177).

F07901	Drive: Motor Overspeed
Reaction:	OFF2 (IASC/DCBRAKE)
Acknowledge:	IMMEDIATELY
Cause:	The maximum permissible speed was either positively or negatively exceeded. The maximum permissible positive speed is formed as follows: Minimum (p1082, CI: p1085) + p2162
Remedy:	The maximum permissible negative speed is formed as follows: Maximum (-p1082, CI: 1088) - p2162 The following applies for a positive direction of rotation: - check r1084 and if required, correct p1082, CI:p1085 and p2162. The following applies for a negative direction of rotation: - check r1087 and if fequired, correct p1082, Clip1088 and p2162. Activate pre-control of the speed limiting controller (p1401.7 = 1). Increase the hysteresis for the overspeed signal p2162. This upper limit is dependent upon the maximum motor speed p0322 and the maximum speed p1082 of the setpoint channel.

F07902 (N, A)	Drive: Motor stalled
Reaction:	OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY

Acknowledge: IMMEDIATELY
Cause: \quad For a vector drive the system has identified that the motor has stall for a time longer than is set in p2178. Fault value (r0949, decimal interpretation):
1: Reserved.
2: Stall detection using r1408.12 (p1745).
See also: p2178 (Motor stalled delay time)
Remedy: Steps should always be taken to ensure that both motor data identification and the rotating measurement were carried out (see p1900, r3925).

- check whether the drive stalls solely due to the load in controlled mode or when the speed setpoint is still zero. If yes, then increase the current setpoint using p1610.
- if the motor excitation time (p0346) was significantly reduced and the drive stalls when it is switched on and run immediately, p0346 should be increased again.
- check the current limits (p0640, r0067, r0289). If the current limits are too low, then the drive cannot be magnetized.
- check whether a line phase failure is affecting power unit PM230, PM250, PM260.
- check whether the motor cables are disconnected (see A07929).

If there is no fault, then the fault tolerance (p 1745) or the delay time (p 2178) can be increased.

A07903	Drive: Motor speed deviation
Reaction:	NONE
Acknowledge:	NONE
Cause:	The absolute value of the speed difference from the setpoint (p 2151) and the speed actual value (r 2169) exceeds the tolerance threshold (p2163) longer than tolerated (p2164, p2166). The alarm is only enabled for p2149.0 = 1 . Possible causes could be: - the load torque is greater than the torque setpoint. - when accelerating, the torque/current/power limit is reached. If the limits are not sufficient, then it is possible that the drive has been dimensioned too small. - for closed-loop torque control, the speed setpoint does not track the speed actual value. - for active Vdc controller. For U/f control, the overload condition is detected as the Imax controller is active. See also: p2149 (Monitoring configuration)
Remedy:	- increase p2163 and/or p2166. - increase the torque/current/power limits. - for closed-loop torque control: The speed setpoint should track the speed actual value. - de-activate alarm with p2149.0 $=0$.

A07910 (N)	Drive: Motor overtemperature
Reaction:	NONE
Acknowledge:	NONE
Cause:	KTY or no sensor:
	The measured motor temperature or the temperature of the thermal model has exceeded the alarm threshold
(p0604). The response parameterized in p0610 becomes active.	
	PTC or bimetallic NC contact:
	The response threshold of 1650 Ohm was exceeded or the NC contact opened.
	Alarm value (r2124, interpret decimal): 11: No output current reduction.
	12: Output current reduction active.
See also: p0604 (Motor temperature alarm threshold), p0610 (Motor overtemperature response)	

F07924	Drive: Torque/speed too high
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For p2193 = 1
	The torque deviates from the torque/speed envelope characteristic (too high).
	For p2193 = 2: \quad :
	The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169) (too high).
Remedy:	- check the connection between the motor and load. - adapt the parameterization corresponding to the load.
F07925	Drive: Torque/speed out of tolerance
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For p2193 = 1:
	The torque deviates from the torque/speed envelope characteristic.
	For p2193 = 2:
	The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169).
Remedy:	- check the connection between the motor and load. - adapt the parameterization corresponding to the load.
A07927	DC braking active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor is braked with DC current. DC braking is active. 1)
	A message with response DCBRK is active. The motor is braked with the braking current set in p1232 for the duration set in in p1233. If the standstill threshold p 1226 is undershot, then braking is prematurely canceled. 2)
	DC braking has been activated at binector input p1230 with the DC braking set (p1230 $=4$). Braking current p1232 is injected until this binector input becomes inactive.
Remedy:	Not necessary.
	The alarm automatically disappears once DC braking has been executed.
A07929 (F)	Drive: No motor detected
Reaction:	NONE
Acknowledge:	NONE
Cause:	The absolute current value is so small after enabling the inverter pulses that no motor is detected. Note: In the case of vector control and an induction motor, this alarm is followed by the fault F07902. See also: p2179 (Output load identification current limit)
Remedy:	- check the motor feeder cables. - reduce the threshold value (p2179), e.g. for synchronous motors. - check the voltage boost of the U/f control (p1310). - carry out a standstill measurement to set the stator resistance (p0350).
F07935 (N)	Drv: Motor holding brake detected
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A motor holding brake was detected where the brake control has not been configured (p1215 = 0).
	Fault value (r0949, decimal interpretation):
	The brake control configuration was set to "motor holding brake the same as sequence control" (p1215 =1) (only when commissioning for the first time).
	The brake control configuration was left at "No motor holding brake available" (p1215 $=0$).
Remedy:	For fault value $=0$:
	- No remedy required.
	For fault value $=1$:
	- If required change the motor holding brake configuration (p1215 = 1, 2).
	- If this fault value unexpectedly occurs, then the motor connections should be checked in order to rule out that they have been interchanged.
	See also: p1215 (Motor holding brake configuration)

F07936	Drive: load failure
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The load monitoring has detected a load failure.
Remedy:	- check the sensor. - if necessary, de-activate the load monitoring (p2193). See also: p2193 (Load monitoring configuration), p3232 (Load monitoring failure detection)
F07950 (A)	Motor parameter incorrect
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The motor parameters were incorrectly entered while commissioning (e.g. p0300 $=0$, no motor) Fault value (r0949, decimal interpretation): Parameter number involved. See also: p0300, p0301, p0304, p0305, p0307, p0310, p0311, p0314, p0316, p0320, p0322, p0323
Remedy:	Compare the motor data with the rating plate data and if required, correct. See also: p0300, p0301, p0304, p0305, p0307, p0310, p0311, p0314, p0316, p0320, p0322, p0323
F07967	Drive: Pole position identification internal fault
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the pole position identification routine. Only for internal Siemens troubleshooting.
Remedy:	Carry out a POWER ON.
F07968	Drive: Lq-Ld measurement incorrect
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the Lq-Ld measurement. Fault value (r0949, decimal interpretation): 10: Stage 1: The ratio between the measured current and zero current is too low. 12: Stage 1: The maximum current was exceeded. 15: Second harmonic too low. 16: Drive converter too small for the measuring technique. 17: Abort due to pulse inhibit.
Remedy:	For fault value $=10$: Check whether the motor is correctly connected. Replace the power unit involved. De-activate technique (p1909). For fault value = 12: Check whether motor data have been correctly entered. De-activate technique (p1909). For fault value = 16: De-activate technique (p1909). For fault value = 17: Repeat technique.

F07969	Drive: Incorrect pole position identification
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the pole position identification routine.
	Fault value (r0949, decimal interpretation):
	1: Current controller limited
	2: Motor shaft locked.
	10: Stage 1: The ratio between the measured current and zero current is too low.
	11: Stage 2: The ratio between the measured current and zero current is too low.
	12: Stage 1: The maximum current was exceeded.
	13: Stage 2: The maximum current was exceeded.
	14: Current difference to determine the +d axis too low.
	15: Second harmonic too low.
	16: Drive converter too small for the measuring technique.
	17: Abort due to pulse inhibit.
	18: First harmonic too low.
	20: Pole position identification requested with the motor shaft rotating and activated flying restart function.
Remedy:	For fault value = 1:
	Check whether the motor is correctly connected.
	Check whether motor data have been correctly entered.
	Replace the power unit involved.
	For fault value $=2$:
	Bring the motor into a no-load condition.
	For fault value = 10:
	When selecting p1980 $=4$: Increase the value for p0325.
	When selecting p1980 $=1$: Increase the value for p0329.
	Check whether the motor is correctly connected.
	Replace the power unit involved.
	For fault value = 11:
	Increase the value for p0329.
	Check whether the motor is correctly connected.
	Replace the power unit involved.
	For fault value = 12:
	When selecting p1980 $=4$: Reduce the value for p0325.
	When selecting p1980 $=1$: Reduce the value for p0329.
	Check whether motor data have been correctly entered.
	For fault value = 13:
	Reduce the value for p0329.
	Check whether motor data have been correctly entered.
	For fault value = 14:
	Increase the value for p0329.
	For fault value = 15:
	Increase the value for p0325.
	Motor not sufficiently anisotropic, change the technique (p1980 = 1 or 10).
	For fault value = 16:
	Change the technique (p1980).
	For fault value = 17:
	Repeat technique.
	For fault value = 18:
	Increase the value for p0329.
	Saturation not sufficient, change the technique (p1980 = 10).
	For fault value $=20$:
	Before carrying out a pole position identification routine ensure that the motor shaft is absolutely stationary (zero speed).

A07980	Drive: Rotating measurement activated
Reaction:	NONE
Acknowledge:	NONE
Cause:	The rotating measurement (automatic speed controller optimization) is activated.
	The rotating measurement is carried out at the next power-on command.
Remedy:	See also: p1960 (Rotating measurement selection)
	Not necessary.
	The alarm disappears automatically after the speed controller optimization has been successfully completed or for
the setting p1900 $=0$.	

A07981	Drive: Enable signals for the rotating measurement missing
Reaction:	NONE
Acknowledge:	NONE
Cause:	The rotating measurement cannot be started due to missing enable signals.
Remedy:	- acknowledge faults that are present. - See also: rooon (Drive operating display), r0046 (Missing enable sig)

F07983 Drive: Rotating measurement saturation characteristic
Reaction: OFF1 (NONE, OFF2)
Acknowledge: IMMEDIATELY

Cause: A fault has occurred while determining the saturation characteristic.
Fault value (r0949, decimal interpretation):
1: The speed did not reach a steady-state condition.
2: The rotor flux did not reach a steady-state condition.
3: The adaptation circuit did not reach a steady-state condition.
4: The adaptation circuit was not enabled.
5: Field weakening active.
6: The speed setpoint was not able to be approached as the minimum limiting is active.
7: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
8: The speed setpoint was not able to be approached as the maximum limiting is active.
9: Several values of the determined saturation characteristic are not plausible.
10: Saturation characteristic could not be sensibly determined because load torque too high.
Remedy:

- the total drive moment of inertia is far higher than that of the motor (p0341, p0342).

De-select rotating measurement (p 1960), enter the moment of inertia p0342, re-calculate the speed controller p0340
$=4$ and repeat the measurement.
Re fault value = 1 ... 2 :

- increase the measuring speed (p1961) and repeat the measurement.

Re fault value = $1 . . .4$:

- check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$.
- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 = 3 .
- carry out a motor data identification routine (p1910).
- if required, reduce the dynamic factor (p1967 < 25 \%).

For fault value $=5$:

- the speed setpoint (p1961) is too high. Reduce the speed.

For fault value $=6$:

- adapt the speed setpoint (p1961) or minimum limiting (p1080).

For fault value $=7$:

- adapt the speed setpoint (p1961) or suppression (skip) bandwidths (p1091 ... p1094, p1101).

For fault value $=8$:

- adapt the speed setpoint (p1961) or maximum limit (p1082, p1083 and p1086).

Re fault value $=9,10$:

- the measurement was carried out at an operating point where the load torque is too high. Select a more suitable operating point, either by changing the speed setpoint (p1961) or by reducing the load torque. The load torque may not be varied while making measurements.
Note:
The saturation characteristic identification routine can be disabled using p1959.1.
See also: p1959 (Rotating measurement configuration)

F07984	Drive: Speed controller optimization, moment of inertia
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred while identifying the moment of inertia.
	Fault value (r0949, decimal interpretation):
	1: The speed did not reach a steady-state condition.
	2: The speed setpoint was not able to be approached as the minimum limiting is active.
	3. The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
	4. The speed setpoint was not able to be approached as the maximum limiting is active.
	5: It is not possible to increase the speed by 10% as the minimum limiting is active.
	6: It is not possible to increase the speed by 10% as the suppression (skip) bandwidth is active.
	7: It is not possible to increase the speed by 10% as the maximum limiting is active.
	8: The torque difference after the speed setpoint step is too low in order to be able to still reliably identify the moment of inertia.
	9: Too few data to be able to reliably identify the moment of inertia.
	10: After the setpoint step, the speed either changed too little or in the incorrect direction.
	11: The identified moment of inertia is not plausible.
Remedy:	For fault value $=1$: \quad :
	- check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$.
	- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$.
	- carry out a motor data identification routine (p1910).
	Re fault value $=2,5$:
	- adapt the speed setpoint (p1965) or adapt the minimum limit (p1080).
	Re fault value $=3,6$:
	- adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101).
	Re fault value $=4,7$: - adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086).
	For fault value $=8$:
	- the total drive moment of inertia is far higher than that of the motor (refer to p0341, p0342). De-select rotating measurement (p 1960), enter the moment of inertia p0342, re-calculate the speed controller p0340 $=4$ and repeat the measurement.
	For fault value $=9$: - check the moment of inertia (p0341, p0342). After the change, re-calculate (p0340 = 3 or 4).
	For fault value = 10:
	- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$.
	Note:
	The moment of inertia identification routine can be disabled using p1959.2.
	See also: p1959 (Rotating measurement configuration)
F07985	Drive: Speed controller optimization (oscillation test)
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the vibration test.
	Fault value (r0949, decimal interpretation):
	1: The speed did not reach a steady-state condition.
	2: The speed setpoint was not able to be approached as the minimum limiting is active.
	3: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
	4: The speed setpoint was not able to be approached as the maximum limiting is active.
	5: Torque limits too low for a torque step.
	6: No suitable speed controller setting was found.
Remedy:	For fault value $=1$: \quad :
	- check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$.
	- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$.
	- carry out a motor data identification routine (p1910).
	- if required, reduce the dynamic factor (p1967 < 25%).
	For fault value $=2$: - adapt the speed setpoint (p1965) or adapt the minimum limit (p1080).
	For fault value $=3$:
	- adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101).
	For fault value $=4$: - adapt the speed setpoint (p 1965) or maximum limit (p1082, p1083 and p1086).
	For fault value $=5$: \quad (
	- increase the torque limits (e.g. p1520, p1521).
	For fault value $=6$:
	- reduce the dynamic factor (p1967). - disable the vibration test (p1959.4 = 0) and repeat the rotating measurement.
	See also: p1959 (Rotating measurement configuration)

F07986	Drive: Rotating measurement ramp-function generator
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	During the rotating measurements, problems with the ramp-function generator occurred. Fault value (r0949, decimal interpretation): 1: The positive and negative directions are inhibited.
Remedy:	For fault value $=1$: Enable the direction (p1110 or p1111).
F07988	Drive: Rotating measurement, no configuration selected
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	When configuring the rotating measurement (p1959), no function was selected.
Remedy:	Select at least one function for automatic optimization of the speed controller (p1959). See also: p1959 (Rotating measurement configuration)
F07990	Drive: Incorrect motor data identification
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the identification routine. Fault value (r0949, decimal interpretation): 1: Current limit value reached. 2: Identified stator resistance lies outside the expected range $0.1 \ldots 100 \%$ of Zn . 3: Identified rotor resistance lies outside the expected range $0.1 \ldots 100 \%$ of Zn . 4: Identified stator reactance lies outside the expected range $50 \ldots 500 \%$ of Zn . 5: Identified magnetizing reactance lies outside the expected range $50 \ldots 500 \%$ of Zn . 6: Identified rotor time constant lies outside the expected range $10 \mathrm{~ms} . . .5 \mathrm{~s}$. 7: Identified total leakage reactance lies outside the expected range $4 \ldots 50 \%$ of Zn . 8: Identified stator leakage reactance lies outside the expected range $2 \ldots 50 \%$ of Zn . 9: Identified rotor leakage reactance lies outside the expected range $2 \ldots 50 \%$ of Zn . 10: Motor has been incorrectly connected. 11: Motor shaft rotates. 20: Identified threshold voltage of the semiconductor devices lies outside the expected range $0 \ldots 10 \mathrm{~V}$. 30: Current controller in voltage limiting. 40: At least one identification contains errors. The identified parameters are not saved to prevent inconsistencies.
Remedy:	For fault value $=0$: - check whether the motor is correctly connected. Observe configuration (star-delta). Re fault value $=1 \ldots 40$: - check whether motor data have been correctly entered in p0300, p0304 ... p0311. - is there an appropriate relationship between the motor power rating and that of the power unit? The ratio of the power unit to the rated motor current should not be less than 0.5 and not be greater than 4. - check configuration (star-delta). Re fault value $=4,7$: - check whether inductances are correctly entered in p0233. - check whether motor has been correctly connected (star-delta).
A07991 (N)	Drive: Motor data identification activated
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor data ident. routine is activated. The motor data identification routine is carried out at the next power-on command. If rotating measurement is selected (see p1900, p1960), it will not be possible to save the parameter assignment. Once motor data identification has been completed or de-activated, the option to save the parameter assignment will be made available again. See also: p1910 (Motor data identification selection)
Remedy:	Not necessary. The alarm automatically disappears after the motor data identification routine has been successfully completed or for the setting p1900 $=0$.

A07994 (N)	Drive: motor data identification not performed
Reaction:	NONE
Acknowledge:	NONE
Cause:	Motor data identification has not yet been performed with the actual data set. The alarm is only initiated when changing the data set (see r0051) in the following cases: - vector control is parameterized in the data set that has been newly selected (p1300 >= 20). - a motor data identification run has still not been performed in the newly selected data set (see r3925).
Remedy:	- Perform motor data identification (see p1900). - Return data set. - Parameterize U/f control (p1300<20).

F08010 (N, A)	CU: Analog-to-digital converter
Reaction:	OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The analog-to-digital converter on the Control Unit has not supplied any converted data.
Remedy:	- check the power supply. - replace Control Unit.

F08700 (A)	CAN: Communications error
Reaction:	OFF3 (NONE, OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A CAN communications error has occurred.
	Fault value (r0949, decimal interpretation):
	1: The error counter for the send telegrams has exceeded the BUS OFF value 255. The bus disables the CAN
controller.	
- bus cable short circuit.	
- incorrect baud rate.	
	- incorrect bit timing.
	2: The master no longer interrogated the CAN node status longer than for its "life time". The "life time" is obtained
	from the "guard time" (p8604[0]) multiplied by the "life time factor" (p8604[1]).
	- bus cable interrupted.
	- bus cable not connected.
- incorrect baud rate.	
- incorrect bit timing.	
- master fault.	
	Note:
	The fault response can be set as required using p8641.
- check the bus cable	
- check the baud rate (p8622).	
- check the bit timing (p8623).	
- check the master.	

F08701 CAN: NMT state change
Reaction: OFF3

Acknowledge: IMMEDIATELY
Cause: A CANopen NMT state transition from "operational" to "pre-operational" or after "stopped". Fault value (r0949, decimal interpretation):
1: CANopen NMT state transition from "operational" to "pre-operational".
2: CANopen NMT state transition from "operational" to "stopped".
Note:
In the NMT state "pre-operational", process data cannot be transferred and in the NMT state "stopped", no process data and no service data can be transferred.
Remedy:
Not necessary.
Acknowledge the fault and continue operation.

F08702 (A)	CAN: RPDO Timeout
Reaction:	OFF3 (NONE, OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The monitoring time of the CANopen RPDO telegram has expired because the bus connection was either interrupted or the CANopen Master was switched-off.
Remedy:	- check the bus cable - check the master. - If required, increase the monitoring time (p8699).
A08751	CAN: Telegram loss
Reaction:	NONE
Acknowledge:	NONE
Cause:	The CAN controller has lost a receive message (telegram).
Remedy:	Reduce the cycle times of the receive messages.
A08752	CAN: Error counter for error passive exceeded
Reaction:	NONE
Acknowledge:	NONE
Cause:	The error counter for the send or receive telegrams has exceeded the value 127.
Remedy:	- check the bus cable - set a higher baud rate (p8622). - check the bit timing and if required optimize (p8623).

A08753	CAN: Message buffer overflow
Reaction:	NONE
Acknowledge:	NONE
Cause:	A message buffer overflow.
	Alarm value (r2124, interpret decimal):
	1: Non-cyclic send buffer (SDO response buffer) overflow.
	2: Non-cyclic receive buffer (SDO receive buffer) overflow.
	3: Cyclic send buffer (PDO send buffer) overflow.
Remedy:	- check the bus cable.
	- set a higher baud rate (p8622).
	- check the bit timing and if required optimize (p8623).
	Re alarm value $=2:$
	- reduce the cycle times of the SDO receive messages.
	- SDO request from master only after SDO feedback for previous SDO request.

A08754	CAN: Incorrect communications mode
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the "operational" mode, an attempt was made to change parameters p8700 ... p8737.
Remedy:	Change to the "pre-operational" or "stopped" mode.

A08755	CAN: Obj cannot be mapped
Reaction:	NONE
Acknowledge:	NONE
Cause:	The CANopen object is not provided for the Process Data Object (PDO) Mapping.
Remedy:	Use a CANopen object intended for the PDO mapping or enter 0.
	The following objects can be mapped in the Receive Process Data Object (RPDO) or Transmit Process Data Object
	(TPDO):
	- RPDO: 6040 hex, 6060 hex, 60FF hex, 6071 hex; 5800 hex $-580 F$ hex; 5820 hex -5827 hex
	- TPDO: 6041 hex, 6061 hex, 6063 hex, 6069 hex, 606 B hex, 606 C hex, 6074 hex; 5810 hex - $581 \mathrm{~F} \mathrm{hex;} 5830$ hex
	- 5837 hex
	Only sub-index 0 of the specified objects can be mapped.
	Note:
	As long as A08755 is present, the COB-ID cannot be set to valid.

A08757	CAN: Set COB-ID invalid
Reaction:	NONE
Acknowledge:	NONE
Cause:	For online operation, the appropriate COB-ID must be set invalid before mapping. Example: Mapping for RPDO 1 should be changed (p8710[0]). --> set p8700[0] = C00006E0 hex (invalid COB-ID) --> set p8710[0] as required. --> p8700[0] enter a valid COB-ID
Remedy:	Set the COB-ID to invalid.
A08759	CAN: PDO COB-ID already available
Reaction:	NONE
Acknowledge:	NONE
Cause:	An existing PDO COB-ID was allocated.
Remedy:	Select another PDO COB-ID.
F30001	Power unit: Overcurrent
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an overcurrent condition. - closed-loop control is incorrectly parameterized. - motor has a short-circuit or fault to ground (frame). - U/f operation: Up ramp set too low. - U/f operation: rated current of motor much greater than that of power unit. - High discharge and post-charging current for line supply voltage interruptions. - High post-charging currents for overload when motoring and DC link voltage dip. - Short-circuit currents at power-on due to the missing line reactor. - power cables are not correctly connected. - power cables exceed the maximum permissible length. - power unit defective. - line phase interrupted. Fault value (r0949, interpret bitwise binary): Bit 0: Phase U. Bit 1: Phase V. Bit 2: Phase W. Bit 3: Overcurrent in the DC link. Note: Fault value $=0$ means that the phase with overcurrent is not recognized.
Remedy:	- check the motor data - if required, carry out commissioning. - check the motor circuit configuration (star-delta) - U/f operation: Increase up ramp. - U/f operation: Check assignment of rated currents of motor and power unit. - check the line supply quality. - Reduce motor load. - Correct connection of line reactor. - check the power cable connections. - check the power cables for short-circuit or ground fault. - check the length of the power cables. - replace power unit. - check the line supply phases.

F30002	Power unit: DC link voltage, overvoltage
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an overvoltage condition in the DC link.
	- motor regenerates too much energy.
	- line supply voltage too high.
	- line phase interrupted.
	- DC-link voltage control switched off.
	- dynamic response of DC-link voltage controller excessive or insufficient.
	Fault value (r0949, decimal interpretation):
DC link voltage at the time of trip [0.1 V].	

F30005	Power unit: Overload 12t
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit was overloaded (r0036 $=100 \%$). - the permissible rated power unit current was exceeded for an inadmissibly long time. - the permissible load duty cycle was not maintained. Fault value (r0949, decimal interpretation): 12 t [$100 \%=16384$].
Remedy:	- reduce the continuous load. - adapt the load duty cycle. - check the motor and power unit rated currents. - reduce the current limit (p0640). - during operation with U/f characteristic: reduce the integral time of the current limiting controller (p1341). See also: r0036 (Power unit overload I2t), r0206 (Rated power unit power), p0307 (Rated motor power)
F30011	Power unit: Line phase failure in main circuit
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A line phase failure was detected at the power unit. - the fuse of a phase of a main circuit has ruptured. - the DC link voltage ripple has exceeded the permissible limit value. Note: The cause may also be a phase failure in the motor feeder cable.
Remedy:	- check the main circuit fuses. - check the motor feeder cables.
F30012	Power unit: Temperature sensor heat sink wire breakage
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The connection to a heat sink temperature sensor in the power unit is interrupted. Fault value (r0949, interpret hexadecimal): Bit 0: Module slot (electronics slot) Bit 1: Air intake Bit 2: Inverter 1 Bit 3: Inverter 2 Bit 4: Inverter 3 Bit 5: Inverter 4 Bit 6: Inverter 5 Bit 7: Inverter 6 Bit 8: Rectifier 1 Bit 9: Rectifier 2
Remedy:	Contact the manufacturer.
F30013	Power unit: Temperature sensor heat sink short-circuit
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The heat sink temperature sensor in the power unit is short-circuited. Fault value (r0949, interpret hexadecimal): Bit 0 : Module slot (electronics slot) Bit 1: Air intake Bit 2: Inverter 1 Bit 3: Inverter 2 Bit 4: Inverter 3 Bit 5: Inverter 4 Bit 6: Inverter 5 Bit 7: Inverter 6 Bit 8: Rectifier 1 Bit 9: Rectifier 2
Remedy:	Contact the manufacturer.

$\overline{\mathrm{F} 30015 \text { (N, A) }}$	Power unit: Phase failure motor cable
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A phase failure in the motor feeder cable was detected. The signal can also be output in the following cases: - The motor is correctly connected, but the drive has stalled in V/f control. In this case, a current of 0 A is possibly measured in one phase due to asymmetry of the currents. - the motor is correctly connected, however the closed-speed control is instable and therefore an oscillating torque is generated. Note: Chassis power units do not feature phase failure monitoring.
Remedy:	- check the motor feeder cables. - increase the ramp-up or ramp-down time (p1120) if the drive has stalled in V/f control. - check the speed controller settings.
A30016 (N)	Power unit: Load supply switched out
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage is too low. Alarm value (r2124, interpret decimal): DC link voltage at the time of trip [0.1 V].
Remedy:	Under certain circumstances, the AC line supply is not switched on.
F30017	Power unit: Hardware current limit has responded too often
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The hardware current limitation in the relevant phase (see A30031, A30032, A30033) has responded too often. The number of times the limit has been exceeded depends on the design and type of power unit. - closed-loop control is incorrectly parameterized. - fault in the motor or in the power cables. - the power cables exceed the maximum permissible length. - motor load too high - power unit defective. Fault value (r0949, interpret binary): Bit 0: Phase U Bit 1: Phase V Bit 2: Phase W
Remedy:	- check the motor data. - check the motor circuit configuration (star-delta). - check the motor load. - check the power cable connections. - check the power cables for short-circuit or ground fault. - check the length of the power cables. - replace power unit.
F30021	Power unit: Ground fault
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Power unit has detected a ground fault. - ground fault in the power cables. - winding fault or ground fault at the motor. - CT defective. - when the brake is applied, this causes the hardware DC current monitoring to respond. Fault value (r0949, decimal interpretation): Absolute value, summation current [32767 = 271 \% rated current].
Remedy:	- check the power cable connections. - check the motor. - check the CT. - check the cables and contacts of the brake connection (a wire is possibly broken). See also: p0287 (Ground fault monitoring thresholds)

F30022	Power unit: Monitoring U_ce
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	In the power unit, the monitoring of the collector-emitter voltage (U _ce) of the semiconductor has responded. Possible causes: - fiber-optic cable interrupted. - power supply of the IGBT gating module missing. - short-circuit at the power unit output. - defective semiconductor in the power unit. Fault value (r0949, interpret binary): Bit 0: Short-circuit in phase U Bit 1: Short circuit in phase V Bit 2: Short-circuit in phase W Bit 3: Light transmitter enable defective Bit 4: U_ce group fault signal interrupted See also: r0949 (Fault value)
Remedy:	- check the fiber-optic cable and if required, replace. - check the power supply of the IGBT gating module (24 V). - check the power cable connections. - select the defective semiconductor and replace.
F30024	Power unit: Overtemperature thermal model
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature difference between the heat sink and chip has exceeded the permissible limit value. - the permissible load duty cycle was not maintained. - insufficient cooling, fan failure. - overload. - ambient temperature too high. - pulse frequency too high. See also: r0037 (Power unit temperatures)
Remedy:	- adapt the load duty cycle. - check whether the fan is running. - check the fan elements. - check whether the ambient temperature is in the permissible range. - check the motor load. - reduce the pulse frequency if this is higher than the rated pulse frequency. - if DC braking is active: reduce braking current (p1232).
F30025	Power unit: Chip overtemperature
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Chip temperature of the semiconductor has exceeded the permissible limit value. - the permissible load duty cycle was not maintained. - insufficient cooling, fan failure. - overload. - ambient temperature too high. - pulse frequency too high. Fault value (r0949): Temperature difference between the heat sink and chip [1 Bit $=0.01^{\circ} \mathrm{C}$].
Remedy:	- adapt the load duty cycle. - check whether the fan is running. - check the fan elements. - check whether the ambient temperature is in the permissible range. - check the motor load. - reduce the pulse frequency if this is higher than the rated pulse frequency. Notice: This fault can only be acknowledged after this alarm threshold for alarm A05001 has been undershot. See also: r0037 (Power unit temperatures)

F30027	Power unit: Precharging DC link time monitoring
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit DC link was not able to be pre-charged within the expected time.
	1) There is no line supply voltage connected.
	2) The line contactor/line side switch has not been closed.
	3) The line supply voltage is too low.
	4) Line supply voltage incorrectly set (p0210).
	5) The pre-charging resistors are overheated as there were too many pre-charging operations per time unit.
	6) The pre-charging resistors are overheated as the DC link capacitance is too high.
	7) The DC link has either a ground fault or a short-circuit.
	8) Pre-charging circuit may be defective.
	Fault value (r0949, interpret binary):
	yyyyxxxx hex:
	yyyy = power unit state
	0: Fault status (wait for OFF and fault acknowledgement).
	1: Restart inhibit (wait for OFF).
	2: Overvoltage condition detected -> change into the fault state.
	3: Undervoltage condition detected -> change into the fault state.
	4: Wait for bypass contactor to open -> change into the fault state.
	5: Wait for bypass contactor to open -> change into restart inhibit.
	6: Commissioning.
	7: Ready for pre-charging.
	8: Pre-charging started, DC link voltage less than the minimum switch-on voltage.
	9: Pre-charging, DC link voltage end of pre-charging still not detected.
	10: Wait for the end of the de-bounce time of the main contactor after pre-charging has been completed.
	11: Pre-charging completed, ready for pulse enable.
	12: Reserved.
	xxxx = Missing internal enable signals, power unit (inverted bit-coded, FFFF hex -> all internal enable signals available)
	Bit 0: Power supply of the IGBT gating shut down.
	Bit 1: Ground fault detected.
	Bit 2: Peak current intervention.
	Bit 3: I2t exceeded.
	Bit 4. Thermal model overtemperature calculated.
	Bit 5: (heat sink, gating module, power unit) overtemperature measured.
	Bit 6: Reserved.
	Bit 7: Overvoltage detected.
	Bit 8: Power unit has completed pre-charging, ready for pulse enable.
	Bit 9: Reserved.
	Bit 10: Overcurrent detected.
	Bit 11: Reserved.
	Bit 12: Reserved.
	Bit 13: Vce fault detected, transistor de-saturated due to overcurrent/short-circuit.
	Bit 14: Undervoltage detected.
	See also: p0210 (Drive unit line supply voltage)
Remedy:	In general:
	- check the line supply voltage at the input terminals.
	- check the line supply voltage setting (p0210).
	- wait until the pre-charging resistors have cooled down. For this purpose, preferably disconnect the infeed unit from the line supply.
	Re 5):
	- carefully observe the permissible pre-charging frequency (refer to the appropriate Equipment Manual).
	Re 6):
	- check the capacitance of the DC link and, if necessary, reduce it in accordance with the maximum permissible DC
	link capacitance (see relevant Equipment Manual).
	Re 7):
	- check the DC link for a ground fault or short circuit.
	See also: p0210 (Drive unit line supply voltage)

A30031	Power unit: Hardware current limiting, phase U
Reaction:	NONE
Acknowledge:	NONE
Cause:	Hardware current limit for phase U responded. The pulsing in this phase is inhibited for one pulse period. - closed-loop control is incorrectly parameterized. - fault in the motor or in the power cables. - the power cables exceed the maximum permissible length. - motor load too high - power unit defective. Note: Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
Remedy:	- check the motor data and if required, recalculate the controller parameters (p0340=3). As an alternative, run a motor data identification (p1910 = 1, p1960 = 1). - check the motor circuit configuration (star-delta) - check the motor load. - check the power cable connections. - check the power cables for short-circuit or ground fault. - check the length of the power cables.

A30032	Power unit: Hardware current limiting, phase V
Reaction:	NONE

Acknowledge:
Cause: Hardware current limit for phase \vee responded. The pulsing in this phase is inhibited for one pulse period.
- closed-loop control is incorrectly parameterized.

- fault in the motor or in the power cables.
- the power cables exceed the maximum permissible length.
- motor load too high
- power unit defective.

Note:
Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
Remedy: \quad Check the motor data and if required, recalculate the controller parameters $(p 0340=3)$. As an alternative, run a motor data identification (p1910 = 1, p1960 = 1).

- check the motor circuit configuration (star-delta)
- check the motor load.
- check the power cable connections.
- check the power cables for short-circuit or ground fault.
- check the length of the power cables.

A30033	Power unit: Hardware current limiting, phase W
Reaction:	NONE
Acknowledge:	NONE
Cause:	Hardware current limit for phase W responded. The pulsing in this phase is inhibited for one pulse period.
	- closed-loop control is incorrectly parameterized.
	- fault in the motor or in the power cables.
	- the power cables exceed the maximum permissible length.
	- motor load too high
	- power unit defective.
	Note:
	Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
	- check the motor data and if required, recalculate the controller parameters (p0340 = 3). As an alternative, run a
	motor data identification (p1910 = 1, p1960 = 1).
	- check the motor circuit configuration (star-delta)
	- check the motor load.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
	- check the length of the power cables.

A30034	Power unit: Internal overtemperature
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for internal overtemperature has been reached. If the temperature inside the unit continues to increase, fault F30036 may be triggered. - ambient temperature might be too high. - insufficient cooling, fan failure. Fault value (r0949, interpret binary): Bit $0=1$: Control electronics range. Bit 1 = 1: Power electronics range.
Remedy:	- check the ambient temperature. - check the fan for the inside of the unit.
F30035	Power unit: Air intake overtemperature
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The air intake in the power unit has exceeded the permissible temperature limit. For air-cooled power units, the temperature limit is at $55^{\circ} \mathrm{C}$. - ambient temperature too high. - insufficient cooling, fan failure. Fault value (r0949, decimal interpretation): Temperature [$0.01^{\circ} \mathrm{C}$].
Remedy:	- check whether the fan is running. - check the fan elements. - check whether the ambient temperature is in the permissible range. Notice: This fault can only be acknowledged after this alarm threshold for alarm A05002 has been undershot.
F30036	Power unit: Internal overtemperature
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	For chassis power units, the following applies: The temperature inside the drive converter has exceeded the permissible temperature limit. - insufficient cooling, fan failure. - overload. - ambient temperature too high. Fault value (r0949, interpret binary): Bit $0=1$: Overtemperature in the control electronics range. Bit 1 = 1: Overtemperature in the power electronics range.
Remedy:	- check whether the fan is running. - check the fan elements. - check whether the ambient temperature is in the permissible range. Notice: This fault can only be acknowledged once the permissible temperature limit minus 5 K has been fallen below.
F30037	Power unit: Rectifier overtemperature
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature in the rectifier of the power unit has exceeded the permissible temperature limit. - insufficient cooling, fan failure. - overload. - ambient temperature too high. - line supply phase failure. Fault value (r0949, decimal interpretation): Temperature $\left[0.01^{\circ} \mathrm{C}\right.$].
Remedy:	- check whether the fan is running. - check the fan elements. - check whether the ambient temperature is in the permissible range. - check the motor load. - check the line supply phases. Notice: This fault can only be acknowledged after this alarm threshold for alarm A05004 has been undershot.

A30042	Power unit: Fan operating time reached or exceeded
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum operating time of the fan in the power unit is set in p0252. This message indicates the following: Fault value (r0949, decimal interpretation): 0 : The maximum fan operating time is 500 hours. 1: The maximum fan operating time has been exceeded.
Remedy:	Replace the fan in the power unit and reset the operating hours counter to 0 ($\mathrm{p} 0251=0$).
A30049	Power unit: Internal fan faulty
Reaction:	NONE
Acknowledge:	NONE
Cause:	The internal fan has failed.
Remedy:	Check the internal fan and replace if necessary.
F30052	EEPROM data error
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	EEPROM data error of the power unit module. Fault value (r0949, interpret hexadecimal): 0 : The EEPROM data read in from the power unit module is inconsistent. 1: The EEPROM data is not compatible with the CU firmware.
Remedy:	For fault value $=0$: Replace power unit module. For fault value $=1$: Replace power unit module.
A30054 (F)	Power unit: Undervoltage when opening the brake
Reaction:	NONE
Acknowledge:	NONE
Cause:	When the brake is being opened, it is detected that the power supply voltage is less than $24 \mathrm{~V}-10 \%=21.6 \mathrm{~V}$. Alarm value (r2124, interpret decimal): Supply voltage fault $[0.1 \mathrm{~V}]$. Example: Alarm value $=212$--> voltage $=21.2 \mathrm{~V}$
Remedy:	Check the 24 V power supply for stability and value.
F30055	Power unit: Braking chopper overcurrent
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	An overcurrent condition has occurred in the braking chopper.
Remedy:	- check whether the braking resistor has a short circuit. - for an external braking resistor, check whether the resistor may have been dimensioned too small. Note: The braking chopper is only enabled again at pulse enable after the fault has been acknowledged.
F30059	Power unit: Internal fan faulty
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The internal power unit fan has failed and is possibly defective.
Remedy:	Check the internal fan and replace if necessary.

F30081	Power unit: Switching operations too frequent
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has executed too many switching operations for current limitation. - closed-loop control is incorrectly parameterized. - motor has a short-circuit or fault to ground (frame). - U/f operation: Up ramp set too low. - U/f operation: rated current of motor much greater than that of power unit. - power cables are not correctly connected. - power cables exceed the maximum permissible length. - power unit defective. Fault value (r0949, interpret bitwise binary): Bit 0 : Phase U. Bit 1: Phase V. Bit 2: Phase W.
Remedy:	- check the motor data - if required, carry out commissioning. - check the motor circuit configuration (star-delta) - U/f operation: Increase up ramp. - U/f operation: Check assignment of rated currents of motor and power unit. - check the power cable connections. - check the power cables for short-circuit or ground fault. - check the length of the power cables. - replace power unit.

F30105	PU: Actual value sensing fault
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	At least one incorrect actual value channel was detected on the Power Stack Adapter (PSA). Remedy:
	Evaluate the diagnostic parameters. If the actual value channel is incorrect, check the components and if required, replace.

A30502	Power unit: DC link overvoltage
Reaction:	NONE
Acknowledge:	NONE
Cause:	The power unit has detected overvoltage in the DC link on a pulse inhibit. - device connection voltage too high. - line reactor incorrectly dimensioned. Fault value (r0949, decimal interpretation): DC link voltage [1 bit $=100 \mathrm{mV}$]. See also: r0070 (Actual DC link voltage)
Remedy:	- check the device supply voltage (p0210). - check the dimensioning of the line reactor. See also: p0210 (Drive unit line supply voltage)

F30600	SI P2: STOP A initiated
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on processor 2 has detected an error and initiated a STOP A.
	- forced checking procedure of the safety shutdown path via processor 2 unsuccessful.
	- subsequent response to fault F30611 (defect in a monitoring channel).
	Fault value (r0949, decimal interpretation):
	0: Stop request from processor 1.
	1005: Pulses suppressed although STO not selected and there is no internal STOP A present.
	1010: Pulses enabled although STO is selected or an internal STOP A is present.
	9999: Subsequent response to fault F30611.
	Select Safe Torque Off and de-select again.
Remedy:	For fault value = 9999:
	- carry out diagnostics for fault F30611.
	Note:
	STO: Safe Torque Off

F30611	SI P2: Defect in a monitoring channel
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on processor 2 has detected a fault in the crosswise data comparison between the two monitoring channels and has initiated a STOP F. As a consequence of this fault, fault F30600 (SI P2: STOP A initiated) is output. Fault value (r0949, decimal interpretation): 0 : Stop request from processor 1. 1 ... 999: Number of the cross-checked data that resulted in this fault. This number is also displayed in r9795. 2: SI enable safety functions (p9601, p9801). Crosswise data comparison is only carried out for the supported bits. 3: SI F-DI changeover tolerance time (p9650, p9850). 8: SI PROFIsafe address (p9610, p9810). 9: SI debounce time for STO (p9651, p9851). 1000: Watchdog timer has expired. Within a time of approx. $5 \times \mathrm{p} 9850$, too many switching operations have occurred at F-DI, or STO (also as subsequent response) was initiated too frequently via PROFIsafe. 1001, 1002: Initialization error, change timer / check timer. 2000: Status of the STO selection for both monitoring channels are different. 2001: Feedback of the safe pulse suppression on the two monitoring channels are different. 6000 ... 6999: Error in the PROFIsafe control. For these fault values, the failsafe control signals (failsafe values) are transferred to the safety functions. The significance of the individual message values is described in safety message $\mathbf{C} 01711$.
Remedy:	Re fault values 1 ... 999 described in "Cause": - check the cross-checked data that resulted in a STOP F. - carry out a POWER ON (power off/on). For fault value $=1000$: - check the wiring of the F-DI (contact problems). - PROFIsafe: Remove contact problems/faults at the PROFIBUS master/PROFINET controller. Re fault value = 1001, 1002: - carry out a POWER ON (power off/on). Re fault value = 2000, 2001, 2002, 2004, 2005: - check the tolerance time F-DI changeover and if required, increase the value (p9650/p9850). - check the wiring of the F-DI (contact problems). - check the causes of the STO selection in r9772. When the SI Motion functions are active (p9501 = 1), STO can also be selected using these functions. Re fault value = 6000 ... 6999: Refer to the description of the message values in safety message C01711. Re fault values that are described in "Cause": - carry out a POWER ON (power off/on). - contact the Hotline - replace Control Unit. Note: F-DI: Failsafe Digital Input STO: Safe Torque Off
N30620 (F, A)	Sl P2: Safe Torque Off active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "Safe Torque Off" (STO) function has been selected on processor 2 using the input terminal and is active. Note: This message does not result in a safety stop response.
Remedy:	Not necessary. Note: STO: Safe Torque Off

F30625	SI P2: Sign-of-life error in safety data
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on processor 2 has detected an error in the sign-of-life of the safety
	data and initiated a STOP A.
	- there is a communication error between processor 1 and processor 2 or communication has failed.
	-a time slice overflow of the safety software has occurred.
	Fault value (r0949, decimal interpretation):
	Only for internal Siemens troubleshooting.
	- select Safe Torque Off and de-select again.
- carry out a POWER ON (power off/on).	
Remedy:	- check whether additional faults are present and if required, perform diagnostics.
	- check the electrical cabinet design and cable routing for EMC compliance

F30651	SI P2: Synchronization with Control Unit unsuccessful
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function requires synchronization of the safety time slices on processor 1
and processor 2. This synchronization was unsuccessful.	
	Note:
	This fault results in a STOP A that cannot be acknowledged.
	Fault value (r0949, decimal interpretation):
	Only for internal Siemens troubleshooting.
	- carry out a POWER ON (power off/on).

F30662	Error in internal communications
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	A module-internal communication error has occurred. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on). - upgrade firmware to later version. - contact the Hotline.
F30664	Error while booting
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An error has occurred during booting. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on). - upgrade firmware to later version. - contact the Hotline.
F30665	SI P2: System is defective
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A system defect was detected before the last boot or in the actual one. The system might have been rebooted (reset). Fault value (r0949, interpret hexadecimal): 200000 hex, 400000 hex: - Fault in the actual booting/operation. Additional values: - defect before the last time that the system booted.
Remedy:	- carry out a POWER ON (power off/on). - upgrade firmware to later version. - contact the Hotline. Re fault value $=400000$ hex: - ensure that the Control Unit is connected to the Power Module.
A30666 (F)	SI Motion P2: Steady-state (static) 1 signal at the F-DI for safety-relevant acknowledgement
Reaction:	NONE
Acknowledge:	NONE
Cause:	A logical 1 signal is present at the F-DI configured in p10106 for more than 10 seconds. If, at the F-DI no acknowledgment was performed for safe acknowledgment, then a steady-state logical and 0 signal must be present. This avoids unintentional safety-relevant acknowledgement (or the "Internal Event Acknowledge" signal) if a wire breaks or one of the two digital inputs bounces.
Remedy:	Set the fail-safe digital input (F-DI) to a logical 0 signal (p10106). Note: F-DI: Failsafe Digital Input

F30680	SI Motion P2: Checksum error safety monitoring functions
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The actual checksum calculated by processor 2 and entered in r9398 over the safety-relevant parameters does not match the reference checksum saved in p9399 at the last machine acceptance. Safety-relevant parameters have been changed or a fault is present. Note: This fault results in a STOP A that can be acknowledged. Fault value (r0949, decimal interpretation): 0 : Checksum error for SI parameters for motion monitoring. 1: Checksum error for SI parameters for component assignment.
Remedy:	- check the safety-relevant parameters and if required, correct. - set the reference checksum to the actual checksum. - perform a POWER ON if safety parameters requiring a POWER ON have been modified. - carry out an acceptance test.
F30681	SI Motion P2: Incorrect parameter value
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The parameter cannot be parameterized with this value. Note: This message does not result in a safety stop response. Fault value (r0949, decimal interpretation): Parameter number with the incorrect value.
Remedy:	Correct the parameter value.
F30682	SI Motion P2: Monitoring function not supported
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The monitoring function enabled in p9301, p9501, p9601 or p9801 is not supported in this firmware version. Note: This message does not result in a safety stop response. Fault value (r0949, decimal interpretation): 1: Monitoring function SLP not supported (p9301.1). 2: Monitoring function SCA not supported (p9301.7 and p9301.8 ... 15). 3: Monitoring function SLS override not supported (p9301.5). 4: Monitoring function external ESR activation not supported (p9301.4). 5: Monitoring function F-DI in PROFIsafe not supported (p9301.30). 6: Enable actual value synchronization not supported (p9301.3). 9: Monitoring function not supported, enable bit reserved (p9301.2, p9301.17 ... 29, p9301.31, if required p9301.6) 24: Monitoring function SDI not supported.
Remedy:	- de-select the monitoring function involved. Note: SCA: Safe Cam SLP: Safely-Limited Position SLS: Safely-Limited Speed SDI: Safe Direction (safe motion direction) See also: p9301, p9501, p9601, p9801, r9871
F30683	SI Motion P2: SLS enable missing
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The safety-relevant function "SLS" is not enabled in p9301 although other safety-relevant monitoring functions are enabled. Note: This message does not result in a safety stop response.
Remedy:	Enable the function "SLS" (p9301.0). Note: SLS: Safely-Limited Speed See also: p9301 (SI Motion enable safety functions (processor 2))

F30692	SI Motion P2: Incorrect parameter value encoderless
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For encoderless motion monitoring functions, the parameter cannot be parameterized with this value. Note: This message does not result in a safety stop response. Fault value (r0949, decimal interpretation): Parameter number with the incorrect value. See also: p9301 (SI Motion enable safety functions (processor 2))
Remedy:	Correct the parameter value or de-select encoderless motion monitoring functions. See also: p9301 (SI Motion enable safety functions (processor 2)), p9501 (SI Motion enable safety functions (processor 1))
A30693 (F)	SI P2: Safety parameter settings changed, POWER ON required
Reaction:	NONE
Acknowledge:	NONE
Cause:	Safety parameters have been changed; these will only take effect following a POWER ON. Alarm value (r2124, interpret decimal): Parameter number of the safety parameter which has changed, necessitating a POWER ON.
Remedy:	- carry out a POWER ON (power off/on).
C30700	SI Motion P2: STOP A initiated
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via a STOP A (pulses are suppressed via the safety shutdown path of processor 1). Possible causes: - stop request from processor 1. - Pulses not suppressed after test stop selection. - subsequent response to the message C30706 "SI Motion P2: SAM/SBR limit exceeded". - subsequent response to the message C30714 "SI Motion P2: Safely-Limited Speed exceeded". - subsequent response to the message C30701 "SI Motion P2: STOP B initiated".
Remedy:	- remove the cause of the fault on the monitoring channel of processor 1. - check the shutdown path of processor 2. - carry out a diagnostics routine for message C30706. - carry out a diagnostics routine for message C30714. - carry out a diagnostics routine for message C30701. - replace Power Module. - replace Control Unit. This message can be acknowledged via F-DI or PROFIsafe. F-DI: Failsafe Digital Input SAM: Safe Acceleration Monitor (safe acceleration monitoring) SBR: Safe Brake Ramp (safe brake ramp monitoring)
C30701	SI Motion P2: STOP B initiated
Reaction:	OFF3
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via a STOP B (braking along the OFF3 deceleration ramp). As a result of this fault, after the speed threshold parameterized in p9360 is fallen below, message C30700 "STOP A initiated" is output. Possible causes: - stop request from processor 1. - subsequent response to the message C30714 "SI Motion P2: Safely-Limited Speed exceeded". - subsequent response to the message C30711 "SI Motion P2: Defect in a monitoring channel". - subsequent response to the message C30707 "SI Motion P2: tolerance for safe operating stop exceeded".
Remedy:	- remove the cause of the fault on the monitoring channel of processor 1. - carry out a diagnostics routine for message C30714. - carry out a diagnostics routine for message C30711. - carry out a diagnostics routine for message C30707. This message can be acknowledged via F-DI or PROFIsafe. Note: F-DI: Failsafe Digital Input

C30706	SI Motion P2: SAM/SBR limit exceeded
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Motion monitoring functions with set acceleration monitoring (p9306 = 3): SAM - safe acceleration monitoring. After initiating STOP B (SS1) the velocity has exceeded the selected tolerance. Motion monitoring functions with set brake ramp monitoring (p9306 = 1): SBR - Safe brake ramp monitoring. After initiating STOP B (SS1) or SLS changeover to the lower speed stage, the speed has exceeded the selected tolerance. The drive is shut down by the message C30700 "SI Motion P2: STOP A initiated".
Remedy:	Check the braking behavior and, if necessary, adapt the tolerance for the parameter settings of the "SAM" or the "SBR" function. This message can be acknowledged without a POWER ON as follows: - motion monitoring functions integrated in the drive: via F-DI or PROFIsafe. Note: F-DI: Failsafe Digital Input SAM: Safe Acceleration Monitor (safe acceleration monitoring) SBR: Safe Brake Ramp (safe brake ramp monitoring) See also: p9348 (SI Motion SAM actual velocity tolerance (Motor Module)), p9381 (SI Motion brake ramp reference value (processor 2)), p9382 (SI Motion brake ramp delay time (processor 2)), p9383 (SI Motion brake ramp monitoring time (processor 2)), p9548 (SI Motion SAM actual velocity tolerance (Control Unit))
C30711	SI Motion P2: Defect in a monitoring channel
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When cross-checking and comparing the two monitoring channels, the drive detected a difference between the input data or results of the monitoring functions and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e. safe operation is no longer possible. If at least one monitoring function is active, then message C30701 "SI Motion: STOP B initiated" is output. The following message values may also occur in the following cases if the cause that is explicitly mentioned does not apply: - synchronization error between processor 1 and processor 2. Message value (r2124, interpret decimal): 0 ... 999: Number of the cross-checked data that resulted in this message. The significance of the individual message values is described in safety message C01711. 1000: Watchdog timer has expired. Too many signal changes have occurred at the F-DI. 1001: Initialization error of watchdog timer. 1005: Pulses already suppressed for test stop selection. 1011: Acceptance test status between the monitoring channels differ. 1020: Cyc. communication failure between the monit. cycles. 1040: Pulses suppressed with active encoderless monitoring functions. 1041: Current absolute value too low (encoderless) 1042: Current/voltage plausibility error 1043: Too many acceleration phases 1044: Actual current values plausibility error. 6000 ... 6166: PROFIsafe message values (PROFIsafe driver for PROFIBUS DP V1/V2 and PROFInet). For these fault values, the failsafe control signals (failsafe values) are transferred to the safety functions. The significance of the individual message values is described in safety message C01711 of the Control Unit. See also: r9725 (SI Motion, diagnostics STOP F)
Remedy:	Re message value $=1040$: - de-select encoderless monitoring functions, select and de-select STO. - if monitoring function is active, issue "SLS" pulse enable within 5 s of de-selecting STO. Re other message values: - the significance of the individual message values is described in safety message C01711. Note: This message can be acknowledged via F-DI or PROFIsafe.

C30712	SI Motion P2: Defect in F-IO processing
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When cross checking and comparing the two monitoring channels, the drive detected a difference between parameters or results of the F-IO processing and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e. safe operation is no longer possible. The safety message C30711 with message value 0 is also displayed due to initiation of STOP F. If at least one monitoring function is active, then safety message C30701 "SI Motion: STOP B initiated" is output. Message value (r2124, interpret decimal): Number of the cross-checked data that resulted in this message. See safety message C01712 for a description of the message values.
Remedy:	- check parameterization in the parameters involved and correct if required. - ensure equality by copying the SI data to processor 2 and then carry out an acceptance test. Note: This message can be acknowledged via F-DI or PROFIsafe.
C30714	SI Motion P2: Safely-Limited Speed exceeded
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive had moved faster than that specified by the velocity limit value (p 9331). The drive is stopped as a result of the configured stop response (p9363). Message value (r2124, interpret decimal): 100: SLS1 exceeded. 200: SLS2 exceeded. 300: SLS3 exceeded. 400: SLS4 exceeded.
Remedy:	- check the traversing/motion program in the control. - check the limits for "SLS" function and if required, adapt (p9331). Note: This message can be acknowledged via F-DI or PROFIsafe. SLS: Safely-Limited Speed See also: p9331 (SI Motion SLS limit values (processor 2)), p9363 (SI Motion SLS stop response (processor 2))
C30716	SI Motion P2: Tolerance for safe motion direction exceeded
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The tolerance for the "safe motion direction" function was exceeded. The drive is stopped as a result of the configured stop response (p9366). Message value (r9749, interpret decimal): 0 : Tolerance for the "safe motion direction positive" function exceeded. 1: Tolerance for the "safe motion direction positive negative" function exceeded.
Remedy:	- check the traversing/motion program in the control. - check the tolerance for "SDI" function and if required, adapt (p9364). This message can be acknowledged as follows: Via F-DI or PROFIsafe Note: SDI: Safe Direction (safe motion direction) SI: Safety Integrated See also: p9364 (SI Motion SDI tolerance (processor 2)), p9365 (SI Motion SDI delay time (processor 2)), p9366 (SI Motion SDI stop response (processor 2))

C30770	SI Motion P2: Discrepancy error affecting the failsafe inputs
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The fail-safe digital inputs (F-DI) show a different state longer than that parameterized in p10002 / p10102.
	Fault value (r0949, interpret binary):
	Bit 0: Discrepancy error for F-DI 0
	Bit 1: Discrepancy error for F-DI 1
	..
	Note:
	If several discrepancy errors occur consecutively, then this fault is only signaled for the first error that occurs.
Remedy:	- check the wiring of the F-DI (contact problems).
	Note:
	This message can be acknowledged via F-DI or PROFIsafe.
	Discrepancy errors of an F-DI can only be completely acknowledged if safe acknowledgement was carried out once
the cause of the error was resolved (p10006 or acknowledgment via PROFIsafe). As long as safety	

N30800 (F)	Power unit: Group signal
Reaction:	OFF2
Acknowledge:	NONE
Cause:	The power unit has detected at least one fault.
Remedy:	Evaluate the other messages that are presently available.
F30802	Power unit: Time slice overflow
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A time slice overflow has occurred.
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline.

A30804 (F)	Power unit: CRC
Reaction:	NONE
Acknowledge:	NONE
Cause:	CRC error actuator
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline.

F30805	Power unit: EPROM checksum error
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Internal parameter data is corrupted. Fault value (r0949, interpret hexadecimal): 01: EEPROM access error. 02: Too many blocks in the EEPROM. Remedy:\quadReplace the module.

F30809	Power unit: Switching information not valid
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	For 3P gating unit: The last switching status word in the setpoint telegram is identified by the end ID. Such an end ID was not found. Remedy:
	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline.

A30810 (F)	Power unit: Watchdog timer
Reaction:	NONE
Acknowledge:	NONE
Cause:	When booting it was detected that the cause of the previous reset was an SAC watchdog timer overflow.
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version.
	- contact the Hotline.

F30850	Power unit: Internal software error
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	POWER ON An internal software error has occurred in the power unit. Cause:
Fault value (r0949, decimal interpretation): Only for internal Siemens troubleshooting. - replace power unit. - if required, upgrade the firmware in the power unit. - contact the Hotline.	

F30903	Power unit: I2C bus error occurred
Reaction:	OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	Communications error with an EEPROM or A/D converter. Fault value (r0949, interpret hexadecimal): 80000000 hex: - internal software error. 00000001 hex ... 0000FFFF hex: - module fault.
Remedy:	Re fault value $=80000000$ hex: - upgrade firmware to later version. Re fault value $=00000001$ hex.. .0000 FFFF hex: - replace the module.
A30920 (F)	Temperature sensor fault
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred. Alarm value (r2124, interpret decimal): 1: Wire breakage or sensor not connected (KTY: $R>2120$ Ohm). 2: Measured resistance too low (PTC: $R<20$ Ohm, KTY: $R<50$ Ohm).
Remedy:	- make sure that the sensor is connected correctly. - replace the sensor.

A30999 (F, N)	Power unit: Unknown alarm
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm occurred on the power unit that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. Alarm value (r2124, interpret decimal): Alarm number. Note: If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the power unit by an older firmware version (r0128). - upgrade the firmware on the Control Unit (r0018).
F50510	FBLOCKS: Logon of the run-time group rejected
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	When the run-time groups of the free function blocks attempted to log on with the sampling time management, the logon of at least one run-time group was rejected. Too many different hardware sampling times may have been assigned to the free function blocks.
Remedy:	- Check number of available hardware sampling times (T_sample < 8 ms) (r7903).

F50511	FBLOCKS: Memory no longer available for free function blocks
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	When the free function blocks were activated, more memory was requested than was available on the Control Unit.
Remedy:	Not necessary.

A50513 (F)	FBLOCKS: Run sequence value already assigned
Reaction:	NONE
Acknowledge:	NONE
Cause:	An attempt was made to assign a run sequence value already assigned to a function block on this drive object to another additional function block on the same drive object. A run sequence value can only be precisely assigned to one function block on one drive object.
Remedy:	Set another value that is still available on this drive object for the run sequence.

A50517	FBLOCKS: Int. meas. active
Reaction:	NONE
Acknowledge:	NONE
Cause:	A Siemens internal measurement has been activated.
Remedy:	Carry out a POWER ON (power off/on) for the Control Unit involved.
F50518	FBLOCKS: Sampling time of free run-time group differs at download
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	In the STARTER/SCOUT project that was downloaded, the hardware sampling time of a free run-time group ($1<=$ p20000[i] <= 256) was set to a value that was either too low or too high. The sampling time must be between 1 ms and the value r20003-r20002. If the sampling time of the selected free run-time group is $<1 \mathrm{~ms}$, the equivalent value of 1 ms is used. If the value $>=\mathrm{r} 20003$, then the sampling time is set to the next higher or the same software sampling time $>=\mathrm{r} 21003$. Fault value (r0949, decimal interpretation): Number of the p20000 index of the run-time group where the sampling time is incorrectly set. Number of the run-time group $=$ fault value +1 Note: For SIMOTION D410, r20003 (unlike all the other Control Units) is automatically set the same as the PROFIBUS sampling time.
Remedy:	- correctly set the sampling time of the run-time group. - if required, take all of the blocks from the run-time group. Note: Fault F50518 only detects an incorrectly parameterized run-time group. If, after correcting p20000[i] in the project, this error occurs again at download, then the run-time group involved should be identified using the fault value (r0949) and the sampling time correctly set.

Appendix

Contents

A. 1	ASCII Table (excerpt)	A-734
A. 2	List for motor code	A-734

A. $1 \quad$ ASCII Table (excerpt)

The following table contains the decimal and hexadecimal notation of selected ASCII indications.

Table A-1 ASCII-Table (excerpt)

Character	Decimal	Hexadecimal	Character	Decimal	Hexadecimal
Space	32	20	H	72	48
-	45	2 D	I	73	49
0	48	30	J	74	4 A
1	49	31	K	75	4 B
2	50	32	L	76	4 C
3	51	33	M	77	4 D
4	52	34	N	78	4 E
5	53	35	O	79	4 F
6	54	36	P	80	50
7	55	37	Q	81	51
8	56	38	R	82	52
9	57	39	S	83	53
A	65	41	T	84	54
B	66	42	U	85	55
C	67	43	V	86	56
D	68	44	W	87	57
E	69	45	X	88	58
F	70	46	Y	89	59
G	71	47	Z	90	5 A

A. 2 List for motor code

Table A-2 Motor code for synchronous motors

Order number	Motor type (p0300)	Motor code (p0301)
1LE400x-1ABxx-xxxx	204	20401
1LE400x-1BBxx-xxxx	204	20402

List of Abbreviations

	with the SINAMICS G120 Products:
Abbreviation	Meaning
A	
AC	Alternating Current
A/D	Analog Digital Converter
ADR	Address
AFM	Additional Frequency Modification
AG	Automation Unit
AI	Analog Input
AK	Request Identifier
AO	Analog Output
AOP	Advanced Operator Panel
ASIC	Application Specific Integrated Circuit
ASP	Analog Setpoint
ASVM	Asymmetric Space Vector Modulation
B	
BCC	Block Check Character
BCD	Binary-Coded Decimal Code
BI	Binector Input
BIA	Berufsgenossenschaftliches Institut für Arbeitssicherheit
BICO	Binector Connector Technology
BO	Binector Output
BOP	Basic Operator Panel
C	
C	Commissioning
CB	Communication Board
CCW	Counter-Clockwise
CDS	Command Data Set
Cl	Connector Input
CM	Configuration Management
CMD	Command
CO	Connector Output
CO/BO	Connector Output/Binector Output
COM	Common contact of a change-over relay (terminal is connected to NO or NC)

Abbreviation	Meaning
CU	Control Unit
CW	Clockwise
D	
D/A	Digital Analog Converter
DC	Digital Current
DDS	Drive Data Set
DI	Digital Input
DIP	DIP Switch
DO	Digital Output
DP	Distributed I/Os
DS	Drive State
E	
ECD	Equivalent Circuit Diagram
EEC	European Economic Community
EEPROM	Electrical Erasable Programmable Read-Only Memory
ELCB	Earth Leakage Circuit Breaker
EMC	Electromagnetic Compatibility
EMF	Electromagnetic Force
ES	Engineering System
F	
FAQ	Frequently Asked Question
FB	Function Block
FCC	Flux Current Control
FCL	Fast Current Limiting
FF	Fixed Frequency
FFB	Free Function Block
FLB	Flat Top Modulation
FOC	Field Orientated Control
FP	Function Diagram
FREQ	Frequency
FSA	Frame Size A
FSB	Frame Size B
FSC	Frame Size C
FSD	Frame Size D
FSE	Frame Size E
FSF	Frame Size F
G	
GSD	Device Data File (Geräte Stamm Datei)
GSG	Getting Started Guide
GUIID	Global Unique Identifier

Abbreviation	Meaning
H	
HIW	Main Actual Value
HMI	Human Machine Interface
HO	High Overload (Constant Torque)
HSW	Main Setpoint
HTL	High-Threshold Logic
I	
IASC	Internal Armature Short-Circuit
IBN	Commissioning
IGBT	Insulated Gate Bipolar Transistor
I/O	Input/Output
IOP	Intelligent Operator Panel
J	
JOG	Jogging
K	
KDV	Data Cross Check
KIB	Kinetic Buffering
L	
LCD	Liquid Crystal Display
LED	Light Emitting Diode
LGE	Length
LO	Light Overload (Variable Torque)
LSTO	Latched Safe Torque Off
LWL	Fiber Optic Conductor
M	
MHB	Motor Holding Brake
MLP	Multi-Language Pack
MOP	Motor Operated Potentiometer
N	
NC	Normally Closed Contact
NEMA	National Electrical Manufacturers Association
NO	Normally Open Contact
0	
OLM	Optical Link Module
OLP	Optical Link Plug
OP	Operator Panel
OPI	Operating Instruction
P	
P1	Processor 1
P2	Processor 2

Abbreviation	Meaning
PID	Proportional Integral Differential
PKE	Parameter ID
PKW	Parameter ID Value Area (Parameter Kennung Wert)
PLC	Programmable Logic Control
PM	Power Module
PM-IF	Power Module Interface
PPO	Parameter Process Data Object
PTC	Positive Temperature Coefficient
PWE	Parameter Value
PWM	Pulse Width Modulation
pxxxx	Write parameter
PZD	Process Data Area (Prozessdaten)
Q	
QC	Quick Commissioning
R	
RAM	Random Access Memory
RCCB	Residual Current Circuit Breaker
RCD	Residual Current Device
RFG	Ramp-Function Generator
RFI	Radio Frequency Interference
ROM	Read-Only Memory
RPM	Revolutions Per Minute
rxxxx	Read-only parameters of analogue signals
S	
SBC	Safe Break Control
SLS	Safe-Limited Speed
SLVC	Sensorless Vector Control
SOL	Serial Option Link
SS1	Safe Stop 1
STO	Safe Torque Off
STW	Control Word
STX	Start of Text
SVM	Space Vector Modulation
T	
TTL	Transistor-Transistor Logic
U	
USS	Universal Serial Interface
v	
VC	Vector Control
V/f	Voltage/frequency
VT	Variable Torque

Abbreviation	Meaning
\mathbf{w}	
WEA	Automatic Restart
z	
ZSW	Status Word
ZUSW	Additional Setpoint

Index

Numbers

1020
Explanation of the symbols (Part 1), 2-494
1021
Explanation of the symbols (Part 2), 2-495 1022

Explanation of the symbols (Part 3), 2-496
1030
Handling BICO technology, 2-497
1520
PROFIdrive/PROFIBUS, 2-499
1530
Internal control/status words, data sets, 2-500
1550
Setpoint channel, 2-501
1690
Vector control, V/f control, 2-502
1700
Vector control, speed control and generation of the torque limits, 2-503
1710
Vector control, current control, 2-504
1750
Monitoring functions, faults, alarms, 2-505 2220

CU240E-2 Digital inputs, electrically isolated (DIO ... DI5), 2-508
2221
CU240B-2 Digital inputs, electrically isolated (DIO ... DI3, 2-507
2222
CU240E-2 Analog inputs as Digital inputs
(DI11 ... DI12), 2-510
2223
CU240B-2 Analog inputs as Digital inputs (DI11), 2-509
2230
CU240E-2 Digital outputs (DO0 ... DO2), 2-512
2231
CU240B-2 Digital output (DO0), 2-511

2410
PROFIBUS, addresses and diagnostics, 2-526
2420
Telegrams and Process Data (PZD), 2-527
2440
PZD receive signals interconnection, 2-528
2441
STW1 control word interconnection, 2-529
2442
STW1 control word interconnection (p2038 = 0), 2-530
2444
STW3 control word interconnection (p2038 = 0), 2-531
2450
PZD send signals interconnection, 2-532
2451
ZSW1 status word interconnection
(p2038 = 2), 2-533
2452
ZSW1 status word interconnection (p2038 = 0), 2-534, 2-535
2468
Receive telegram, free interconnection via BICO (p0922 = 999), 2-536
2470
Send telegram, free interconnetion via BICO (p0922 = 999), 2-537
2472
Status words, free interconnection, 2-538
2501
Control word, sequence control, 2-540
2503
Status word, sequence control, 2-541 2505

Control word, setpoint channel, 2-542
2510
Status word 1 (r0052), 2-543
2511
Status word 2 (r0053), 2-544

2512
Control word 1 (r0054), 2-545
2513
Control word 2 (r0055), 2-546
2520
Control word, speed controller, 2-547 2522

Status word, speed controller, 2-548
2526
Status word, closed-loop control, 2-549
2530
Status word, current control, 2-550
2534
Status word, monitoring functions 1, 2-551
2536
Status word, monitoring functions 2 , 2-552
2537
Status word, monitoring functions 3 2-553
2546
Control word, faults/alarms, 2-554
2548
Status word, faults/alarms 1 and 2, 2-555 2634

Sequence control - Missing enable signals, 2-556
2701
Basic braking control, 2-558
2800
Basic Functions, Parameter Manager, 2-560
2802
Basic Functions, Monitoring functions and faults/alarms, 2-561
2804
Basic Functions, Status words, 2-562
2810
Basic Functions, STO Safe Torque Off, 2-563
2812
Basic Functions, F-DI Fail-safe Digital Input, 2-564
2820
SI Motion, SLS Safely-Limited Speed, 2-565
2825
SI Motion, SS1 Safe Stop 1, Internal STOP A, B, F, 2-566

2840
SI Motion, PROFIsafe Control word and Status word, 2-568
SI Motion, Status words, 2-567
2846
SI Motion, Parameter Manager, 2-569
2850
SI Motion, Fail-safe Digital Inputs (FDIO ... F-DI2), 2-570
2855
SI Motion, Safe State selection, 2-571
3010
Fixed speed setpoints, binary selection
(p1016 = 2), 2-573
3011
Fixed speed setpoints, direct selection (p1016 = 1), 2-574
3020
Motorized potentiometer, 2-575
3030
Main/supplementary setpoint, setpoint scaling, jogging, 2-576
3040
Direction limitation and direction reversal, 2-577
3050
Skip frequency bands and frequency limitations, 2-578
3060
Basic ramp-function generator, 2-579
3070
Extended ramp-function generator, 2-580 3080

Ramp-function generator selection, status word, tracking, 2-581
6030
Speed setpoint, droop, 2-587
6031
Pre-control balancing, acceleration model, 2-588
6040
Speed controller, 2-589
6050
Kp_n/Tn_n adaption, 2-590
6060
Torque setpoint, 2-591
6220
Vdc_max controller and
Vdc_min controller (Vector control,
PM230/PM240), 2-592
6300
V/f characteristic and voltage boost, 2-583

6310
Resonance damping and
slip compensation, 2-584
6320
Vdc_max controller and Vdc_min controller (V/f control, PM230/PM240), 2-585
6490
Speed control configuration, 2-593
6491
Flux control configuration, 2-594 6630

Upper/lower torque limit, 2-595 6640

Current/power/torque limits, 2-596
6710
Current setpoint filter, 2-597
6714
Iq and Id controllers, 2-598
6721
Id setpoint (PEM, p0300 = 2xx), 2-599
6722
Field weakening characteristic, Id setpoint
(ASM, p0300 = 1), 2-600
6723
Field weakening controller, flux controller (ASM, p0300 = 1), 2-601
6724
Field weakening controller
(PEM, p0300 = 2xx), 2-602
6730
Interface to the Power Module (ASM, p0300 = 1), 2-603
6731
Interface to the Power Module
(PEM, p0300 = 2xx), 2-604
6799
Display signals, 2-605
7017
DC brake (p0300 = 1), 2-628
7200
Run-time groups / Sampling times, 2-607
7210
AND (AND function block with 4 inputs), 2-608
7212
OR (OR function block with 4 inputs), 2-609
7214
XOR (XOR function block with 4 inputs), 2-610
7216
NOT (inverter), 2-611

7220
ADD (adder with 4 inputs),
SUB (subtracter), 2-612
7222
MUL (multiplier), DIV (divider), 2-613
7224
AVA (absolute value generators), 2-614
7225
NCM (numerical comparator), 2-615
7226
PLI (scaling polyline), 2-616
7230
MFP (pulse generator), PCL (pulse shortener), 2-617
7232
PDE (switch-in delay), 2-618
7233
PDF (switch-out delay), 2-619
7234
PST (pulse extender), 2-620
7240
RSR (RS flipflop),
DFR (D flipflop), 2-621
7250
BSW (binary changeover switch), NSW (numerical changeover switch), 2-622
7260
LIM (limiter), 2-623
7262
PT1 (smoothing element), 2-624
7264
INT (integrator),
DIF (differentiating element), 2-625
7270
LVM (limit value monitor), 2-626
7950
Fixed values, binary selection
(p2216 = 2), 2-630
7951
Fixed values, direct selection (p2216 = 1), 2-631
7954
Motorized potentiometer, 2-632
7958
Closed-loop control, 2-633
8010
Speed signals 1, 2-635
8011
Speed signals 2, 2-636
8012
Torque signals, motor locked/stalled, 2-637

8013
Load monitoring, 2-638
8014
Thermal monitoring, power module, 2-639 8016

Thermal monitoring, motor, 2-640
8017
Thermal 12 t motor model
(PEM, p0300 = 2xx), 2-641
8020
Monitoring functions 1, 2-642
8021
Monitoring functions 2, 2-643
8060
Fault buffer, 2-645
8065
Warning buffer, 2-646
8070
Fault/warning trigger word (r2129), 2-647
8075
Fault/warning configuration, 2-648
8560
Command Data Sets (CDS), 2-650
8565
Drive Data Sets (DDS), 2-651
9310
Configuration, addresses and diagnostics, 2-519
9342
STW1 control word interconnection, 2-520
9352
ZSW1 status word interconnection, 2-521
9360
Receive telegram, free interconnection via BICO, 2-522
9370
Send telegram, free interconnection via BICO, 2-523
9372
Status words, free interconnection, 2-524
9566
CU240E-2 Analog
inputs 0 ... 1 (AIO ... Al1), 2-514
9567
CU240B-2 Analog input 0 (AIO), 2-513
9572
CU240E-2 Analog outputs 0 ... 1
(AOO ... AO1), 2-516
9573
CU240B-2 Analog outputs 0 (AOO), 2-515

A

Acknowledgement
IMMEDIATELY, 3-657
POWER ON, 3-657
Adjustable parameter, 1-8
Alarm
Display, 3-654
General, 3-654
How to distinguish from a fault, 3-655
List of Alarm messages, 3-658
Analog inputs, 2-506
Analog outputs, 2-506
ASCII Table, A-734

B

Bit field (Parameters), 1-14
Bremsensteuerung, 2-557

C

Calculated (Parameters), 1-11
Can be changed (Parameters), 1-12
Command Data Set, 2-649
Contents
Contents overview, Contents-5
List of Abbreviations, B-735

D

Data set (Parameters), 1-12
Data sets, 2-649
Data type (Parameters), 1-10
DCBRK, 3-656
Dependency (Parameters), 1-14
Description (Parameters), 1-14
Digital inputs, 2-506
Digital outputs, 2-506
Display
Alarms, 3-654
Faults, 3-654
Drive Data Set, 2-649

F

Fault
Acknowledgement, 3-657
Display, 3-654
Fault reactions, 3-656
General, 3-654
How to distinguish from an alarm, 3-655
Fault messages
List of all Fault messages, 3-658
Fault reactions, 3-656
Fixed values, 2-630, 2-631
Free Function Blocks, 2-606

Function diagrams Braking control
Basic braking control, 2-558
Function diagrams Data sets
Command Data Sets (CDS), 2-650
Drive Data Sets (DDS), 2-651
Function diagrams Faults and warnings
Fault buffer, 2-645
Fault/warning configuration, 2-648
Fault/warning trigger word (r2129), 2-647
Warning buffer, 2-646
Function diagrams Fieldbus Interface
Configuration, addresses and diagnostics, 2-519
Receive telegram, free interconnection via BICO, 2-522
Send telegram, free interconnection via BICO, 2-523
Status words, free interconnection, 2-524
STW1 control word interconnection, 2-520
ZSW1 status word interconnection, 2-521
Function diagrams Free Function Blocks
ADD (adder), 2-612
AND (AND function block with 4 inputs), 2-608
AVA (absolute value generators), 2-614
BSW (binary changeover switch), 2-622
DFR (D flipflop), 2-621
DIF (differentiating element), 2-625
DIV (divider), 2-613
INT (integrator), 2-625
LIM (limiter), 2-623
LVM (limit value monitor), 2-626
MFP (pulse generator), 2-617
MUL (multiplier), 2-613
NCM (numerical comparator), 2-615
NOT (inverter), 2-611
NSW (numerical changeover switch), 2-622
OR (OR function block with 4 inputs), 2-609
PCL (pulse shortener), 2-617
PDE (switch-in delay), 2-618
PDF (switch-out delay), 2-619
PLI (scaling polyline), 2-616
PST (pulse extender), 2-620
PT1 (smoothing element), 2-624
RSR (RS flipflop), 2-621
Run-time groups / Sampling times, 2-607
SUB (subtracter), 2-612
XOR (XOR function block with 4 inputs), 2-610

Function diagrams General
Explanation of the symbols (Part 1), 2-494
Explanation of the symbols (Part 2), 2-495
Explanation of the symbols (Part 3), 2-496
Handling BICO technology, 2-497
Function diagrams Input/Output Terminals
CU240B-2 Analog input 0 (AIO), 2-513
CU240B-2 Analog inputs as Digital inputs (DI11), 2-509
CU240B-2 Analog output 0 (AO0), 2-515
CU240B-2 Digital inputs, electrically isolated (DIO ... DI3), 2-507
CU240B-2 Digital output (DO0), 2-511
CU240E-2 Analog inputs as Digital inputs (DI11 ... DI12), 2-510
CU240E-2 Analog inputs 0 ... 1 (AIO ... AI1), 2-514
CU240E-2 Analog outputs 0 ... 1 (AO0 ... AO1), 2-516
CU240E-2 Digital inputs, electrically isolated (DIO ... DI5), 2-508
CU240E-2 Digital outputs (DO0 ... DO2), 2-512
Function diagrams Internal control/status words
Control word 1 (r0054), 2-545
Control word 2 (r0055), 2-546
Control word, faults/alarms, 2-554
Control word, sequence control, 2-540
Control word, setpoint channel, 2-542
Control word, speed controller, 2-547
Sequence control - Missing enable signals, 2-556
Status word 1 (r0052), 2-543
Status word 2 (r0053), 2-544
Status word, closed-loop control, 2-549
Status word, current control, 2-550
Status word, faults/alarms 1 and 2, 2-555
Status word, monitoring functions 1 , 2-551
Status word, monitoring functions 2 , 2-552
Status word, monitoring functions 3, 2-553
Status word, sequence control, 2-541
Status word, speed controller, 2-548

Function diagrams Overview
Internal control/status words, data sets, 2-500
Monitoring functions, faults, alarms, 2-505
PROFIdrive/PROFIBUS, 2-499
Setpoint channel, 2-501
Vector control, current control, 2-504
Vector control, speed control and generation of the torque limits, 2-503
Vector control, V/f control, 2-502
Function diagrams PROFIdrive
PROFIBUS, addresses and diagnostics, 2-526
PZD receive signals interconnection, 2-528
PZD send signals interconnection, 2-532
Receive telegram, free interconnection via BICO (p0922 = 999), 2-536
Send telegram, free interconnetion via BICO (p0922 = 999), 2-537
Status words, free interconnection, 2-538
STW1 control word interconnection, 2-529
STW1 control word interconnection (p2038 = 0), 2-530
STW3 control word interconnection (p2038 = 0), 2-531
Telegrams and Process Data (PZD), 2-527
ZSW1 status word interconnection (p2038 = 0), 2-534, 2-535
ZSW1 status word interconnection (p2038 = 2), 2-533

Function diagrams Safety Integrated
Basic Functions, F-DI Fail-safe Digital Input, 2-564
Basic Functions, Monitoring functions and faults/alarms, 2-561
Basic Functions, Parameter Manager, 2-560
Basic Functions, Status words, 2-562
Basic Functions, STO Safe Torque Off, 2-563
SI Motion, Parameter Manager, 2-569
SI Motion, PROFIsafe Control word and Status word, 2-568
SI Motion, Safe State selection, 2-571
SI Motion, SLS Safely-Limited Speed, 2-565
SI Motion, Status words, 2-567
SI Motion, Fail-safe Digital Inputs (FDIO ... F-DI2), 2-570
SI Motion, SS1 Safe Stop 1, Internal STOP A, B, F, 2-566
Function diagrams Setpoint channel
Basic ramp-function generator, 2-579
Direction limitation and direction reversal, 2-577
Extended ramp-function generator, 2-580
Fixed speed setpoints, binary selection (p1016 = 2), 2-573
Fixed speed setpoints, direct selection (p1016 = 1), 2-574
Main/supplementary setpoint, setpoint scaling, jogging, 2-576
Motorized potentiometer, 2-575
Ramp-function generator selection, status word, tracking, 2-581
Skip frequency bands and frequency limitations, 2-578
Function diagrams Signals and monitoring functions
Load monitoring, 2-638
Monitoring functions 1, 2-642
Monitoring functions 2, 2-643
Speed signals 1, 2-635
Speed signals 2, 2-636
Thermal I2t motor model (PEM, p0300 = 2xx), 2-641
Thermal monitoring, motor, 2-640
Thermal monitoring, power module, 2-639
Torque signals, motor locked/stalled, 2-637

Function diagrams Technology controller
Closed-loop control, 2-633
Fixed values, binary selection (p2216 = 2), 2-630
Fixed values, direct selection (p2216 = 1), 2-631
Motorized potentiometer, 2-632
Function diagrams Technology functions
DC brake ($\mathrm{p} 0300=1$), 2-628
Function diagrams V/f control
Resonance damping and slip compensation, 2-584
V / f characteristic and voltage boost, 2-583
Function diagrams V/f control
Vdc_max controller and Vdc_min controller (V/f control, PM230/PM240), 2-585
Function diagrams Vector control
Current setpoint filter, 2-597
Current/power/torque limits, 2-596
Display signals, 2-605
Field weakening characteristic, Id setpoint (ASM, p0300 = 1), 2-600
Field weakening controller (PEM, p0300 = 2xx), 2-602
Field weakening controller, flux controller (ASM, p0300 = 1), 2-601
Flux control configuration, 2-594
Id setpoint (PEM, p0300 = 2xx), 2-599
Interface to the Power Module (ASM, p0300 = 1), 2-603
Interface to the Power Module (PEM, p0300 = 2xx), 2-604
Iq and Id controllers, 2-598
Kp_n/Tn_n adaption, 2-590
Pre-control balancing, acceleration model, 2-588
Speed control configuration, 2-593
Speed controller, 2-589
Speed setpoint, droop, 2-587
Torque setpoint, 2-591
Upper/lower torque limit, 2-595
Vdc_max controller and Vdc_min controller (Vector control, PM230/PM240), 2-592

G

General
Faults and alarms, 3-654
Function Diagrams, 2-493
Parameters, 1-8

I

IASC, 3-656
Index
Parameters, 1-8, 1-14
Input/Output Terminals
Analog inputs, 2-506
Analog outputs, 2-506
Digital inputs, 2-506
Digital outputs, 2-506

L

List of Abbreviations, B-735
Lists
Abbreviations, B-735
ASCII Table, A-734
Binector Input Parameters, 1-474
Binector Output Parameters, 1-478
Command Data Sets, 1-464
Connector Input Parameters, 1-476
Connector Output Parameters, 1-479
Connector/Binector Output Parameters, 1-483
Drive Data Sets, 1-466
Fault- and Alarm messages, 3-658
List of motor code, A-734
Motor Data Sets, 1-471
Parameters all, 1-16
Power module Data Sets, 1-474
Quick commissioning, 1-485

M

Motorized potentiometer, 2-632

N

Name
Parameters, 1-9
Number
Parameters, 1-8

0

OFF1, 3-656
OFF2, 3-656
OFF3, 3-656

P

Parameters
Binector Input Parameters, 1-474
Binector Output, 1-478
Bit field, 1-14
Calculated, 1-11
Can be changed, 1-12
Command Data Sets, 1-464
Connector Input, 1-476
Connector Output, 1-479
Connector/Binector Output, 1-483
Data set, 1-12
Data type, 1-10
Dependency, 1-14
Description, 1-14
Drive Data Sets, 1-466
Index, 1-8, 1-14
List of all Parameters, 1-16
Long name, 1-9
Motor Data Sets, 1-471
Name, 1-9
Number, 1-8
Power module Data Sets, 1-474
Quick commissioning, 1-485
Recommendation, 1-14
Scaling, 1-11
Short name, 1-9
Text, 1-9
Unit, 1-13
Unit group, 1-13
Unit selection, 1-13
Values, 1-14

R

Recommendation (Parameters), 1-14

S

Safety Integrated
Basic Functions, 2-559
Extendet Functions, 2-559
Scaling (Parameters), 1-11
STOP2, 3-656

U

Unit (Parameters), 1-13
Unit group (Parameters), 1-13
Unit selection (Parameters), 1-13

V

Values (Parameters), 1-14
Visualization parameters, 1-8

Siemens AG
Industry Sector
Drive Technologies
Motion Control Systems Postfach 3180
91050 ERLANGEN
GERMANY

[^0]: Мə!мン^О
 sweıБе!р uо!!כun」

[^1]: suo!!כunf Би!ıоџ!иош pue sןeиб!S
 sueィбе!р uо!џวun」

